A Spatiotemporal Solution to Control COVID-19 Transmission at the Community Scale for Returning to Normalcy: COVID-19 Symptom Onset Risk Spatiotemporal Analysis

Author:

Tong ChengzhuoORCID,Shi WenzhongORCID,Zhang AnshuORCID,Shi ZhichengORCID

Abstract

Background Following the recent COVID-19 pandemic, returning to normalcy has become the primary goal of global cities. The key for returning to normalcy is to avoid affecting social and economic activities while supporting precise epidemic control. Estimation models for the spatiotemporal spread of the epidemic at the refined scale of cities that support precise epidemic control are limited. For most of 2021, Hong Kong has remained at the top of the “global normalcy index” because of its effective responses. The urban-community-scale spatiotemporal onset risk prediction model of COVID-19 symptom has been used to assist in the precise epidemic control of Hong Kong. Objective Based on the spatiotemporal prediction models of COVID-19 symptom onset risk, the aim of this study was to develop a spatiotemporal solution to assist in precise prevention and control for returning to normalcy. Methods Over the years 2020 and 2021, a spatiotemporal solution was proposed and applied to support the epidemic control in Hong Kong. An enhanced urban-community-scale geographic model was proposed to predict the risk of COVID-19 symptom onset by quantifying the impact of the transmission of SARS-CoV-2 variants, vaccination, and the imported case risk. The generated prediction results could be then applied to establish the onset risk predictions over the following days, the identification of high–onset-risk communities, the effectiveness analysis of response measures implemented, and the effectiveness simulation of upcoming response measures. The applications could be integrated into a web-based platform to assist the antiepidemic work. Results Daily predicted onset risk in 291 tertiary planning units (TPUs) of Hong Kong from January 18, 2020, to April 22, 2021, was obtained from the enhanced prediction model. The prediction accuracy in the following 7 days was over 80%. The prediction results were used to effectively assist the epidemic control of Hong Kong in the following application examples: identified communities within high–onset-risk always only accounted for 2%-25% in multiple epidemiological scenarios; effective COVID-19 response measures, such as prohibiting public gatherings of more than 4 people were found to reduce the onset risk by 16%-46%; through the effect simulation of the new compulsory testing measure, the onset risk was found to be reduced by more than 80% in 42 (14.43%) TPUs and by more than 60% in 96 (32.99%) TPUs. Conclusions In summary, this solution can support sustainable and targeted pandemic responses for returning to normalcy. Faced with the situation that may coexist with SARS-CoV-2, this study can not only assist global cities in responding to the future epidemics effectively but also help to restore social and economic activities and people’s normal lives.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference42 articles.

1. Seeing COVID-19 through an urban lens

2. The global normalcy indexThe Economist2021-10-01https://www.economist.com/graphic-detail/tracking-the-return-to-normalcy-after-covid-19

3. The mutation that helps Delta spread like wildfire

4. How the Delta variant achieves its ultrafast spread

5. How the coronavirus infects cells — and why Delta is so dangerous

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3