Using a Convolutional Neural Network and Convolutional Long Short-term Memory to Automatically Detect Aneurysms on 2D Digital Subtraction Angiography Images: Framework Development and Validation

Author:

Liao JunHuaORCID,Liu LunXinORCID,Duan HaiHanORCID,Huang YunZhiORCID,Zhou LiangXueORCID,Chen LiangYinORCID,Wang ChaoHuaORCID

Abstract

Background It is hard to distinguish cerebral aneurysms from overlapping vessels in 2D digital subtraction angiography (DSA) images due to these images’ lack of spatial information. Objective The aims of this study were to (1) construct a deep learning diagnostic system to improve the ability to detect posterior communicating artery aneurysms on 2D DSA images and (2) validate the efficiency of the deep learning diagnostic system in 2D DSA aneurysm detection. Methods We proposed a 2-stage detection system. First, we established the region localization stage to automatically locate specific detection regions of raw 2D DSA sequences. Second, in the intracranial aneurysm detection stage, we constructed a bi-input+RetinaNet+convolutional long short-term memory (C-LSTM) framework to compare its performance for aneurysm detection with that of 3 existing frameworks. Each of the frameworks had a 5-fold cross-validation scheme. The receiver operating characteristic curve, the area under the curve (AUC) value, mean average precision, sensitivity, specificity, and accuracy were used to assess the abilities of different frameworks. Results A total of 255 patients with posterior communicating artery aneurysms and 20 patients without aneurysms were included in this study. The best AUC values of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks were 0.95, 0.96, 0.92, and 0.97, respectively. The mean sensitivities of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 89% (range 67.02%-98.43%), 88% (range 65.76%-98.06%), 87% (range 64.53%-97.66%), 89% (range 67.02%-98.43%), and 90% (range 68.30%-98.77%), respectively. The mean specificities of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 80% (range 56.34%-94.27%), 89% (range 67.02%-98.43%), 86% (range 63.31%-97.24%), 93% (range 72.30%-99.56%), and 90% (range 68.30%-98.77%), respectively. The mean accuracies of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 84.50% (range 69.57%-93.97%), 88.50% (range 74.44%-96.39%), 86.50% (range 71.97%-95.22%), 91% (range 77.63%-97.72%), and 90% (range 76.34%-97.21%), respectively. Conclusions According to our results, more spatial and temporal information can help improve the performance of the frameworks. Therefore, the bi-input+RetinaNet+C-LSTM framework had the best performance when compared to that of the other frameworks. Our study demonstrates that our system can assist physicians in detecting intracranial aneurysms on 2D DSA images.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference34 articles.

1. Minimally Invasive Microsurgery for Cerebral Aneurysms

2. The detection and management of unruptured intracranial aneurysms

3. An overview of intracranial aneurysms

4. Dermatologist-level classification of skin cancer with deep neural networks

5. KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networks2012Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012December 3-6, 2012Lake Tahoe, Nevada, United States19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3