Type 1 Diabetes Hypoglycemia Prediction Algorithms: Systematic Review

Author:

Tsichlaki StellaORCID,Koumakis LefterisORCID,Tsiknakis ManolisORCID

Abstract

Background Diabetes is a chronic condition that necessitates regular monitoring and self-management of the patient’s blood glucose levels. People with type 1 diabetes (T1D) can live a productive life if they receive proper diabetes care. Nonetheless, a loose glycemic control might increase the risk of developing hypoglycemia. This incident can occur because of a variety of causes, such as taking additional doses of insulin, skipping meals, or overexercising. Mainly, the symptoms of hypoglycemia range from mild dysphoria to more severe conditions, if not detected in a timely manner. Objective In this review, we aimed to report on innovative detection techniques and tactics for identifying and preventing hypoglycemic episodes, focusing on T1D. Methods A systematic literature search following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed focusing on the PubMed, GoogleScholar, IEEEXplore, and ACM Digital Library to find articles on technologies related to hypoglycemia detection in patients with T1D. Results The presented approaches have been used or devised to enhance blood glucose monitoring and boost its efficacy in forecasting future glucose levels, which could aid the prediction of future episodes of hypoglycemia. We detected 19 predictive models for hypoglycemia, specifically on T1D, using a wide range of algorithmic methodologies, spanning from statistics (1.9/19, 10%) to machine learning (9.88/19, 52%) and deep learning (7.22/19, 38%). The algorithms used most were the Kalman filtering and classification models (support vector machine, k-nearest neighbors, and random forests). The performance of the predictive models was found to be satisfactory overall, reaching accuracies between 70% and 99%, which proves that such technologies are capable of facilitating the prediction of T1D hypoglycemia. Conclusions It is evident that continuous glucose monitoring can improve glucose control in diabetes; however, predictive models for hypo- and hyperglycemia using only mainstream noninvasive sensors such as wristbands and smartwatches are foreseen to be the next step for mobile health in T1D. Prospective studies are required to demonstrate the value of such models in real-life mobile health interventions.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics,Biomedical Engineering,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3