The Variability of Lumbar Sequential Motion Patterns: Observational Study

Author:

Caelers IngeORCID,Boselie ToonORCID,van Hemert WouterORCID,Rijkers KimORCID,De Bie RobORCID,van Santbrink HenkORCID

Abstract

Background Physiological motion of the lumbar spine is a topic of interest for musculoskeletal health care professionals since abnormal motion is believed to be related to lumbar complaints. Many researchers have described ranges of motion for the lumbar spine, but only few have mentioned specific motion patterns of each individual segment during flexion and extension, mostly comprising the sequence of segmental initiation in sagittal rotation. However, an adequate definition of physiological motion is still lacking. For the lower cervical spine, a consistent pattern of segmental contributions in a flexion-extension movement in young healthy individuals was described, resulting in a definition of physiological motion of the cervical spine. Objective This study aimed to define the lumbar spines’ physiological motion pattern by determining the sequence of segmental contribution in sagittal rotation of each vertebra during maximum flexion and extension in healthy male participants. Methods Cinematographic recordings were performed twice in 11 healthy male participants, aged 18-25 years, without a history of spine problems, with a 2-week interval (time point T1 and T2). Image recognition software was used to identify specific patterns in the sequence of segmental contributions per individual by plotting segmental rotation of each individual segment against the cumulative rotation of segments L1 to S1. Intraindividual variability was determined by testing T1 against T2. Intraclass correlation coefficients were tested by reevaluation of 30 intervertebral sequences by a second researcher. Results No consistent pattern was found when studying the graphs of the cinematographic recordings during flexion. A much more consistent pattern was found during extension, especially in the last phase. It consisted of a peak in rotation in L3L4, followed by a peak in L2L3, and finally, in L1L2. This pattern was present in 71% (15/21) of all recordings; 64% (7/11) of the participants had a consistent pattern at both time points. Sequence of segmental contribution was less consistent in the lumbar spine than the cervical spine, possibly caused by differences in facet orientation, intervertebral discs, overprojection of the pelvis, and muscle recruitment. Conclusions In 64% (7/11) of the recordings, a consistent motion pattern was found in the upper lumbar spine during the last phase of extension in asymptomatic young male participants. Physiological motion of the lumbar spine is a broad concept, influenced by multiple factors, which cannot be captured in a firm definition yet. Trial Registration ClinicalTrials.gov NCT03737227; https://clinicaltrials.gov/ct2/show/NCT03737227 International Registered Report Identifier (IRRID) RR2-10.2196/14741

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3