Genomic Insights Into the Evolution and Demographic History of the SARS-CoV-2 Omicron Variant: Population Genomics Approach

Author:

Garg Kritika MORCID,Lamba VinitaORCID,Chattopadhyay BalajiORCID

Abstract

Background A thorough understanding of the patterns of genetic subdivision in a pathogen can provide crucial information that is necessary to prevent disease spread. For SARS-CoV-2, the availability of millions of genomes makes this task analytically challenging, and traditional methods for understanding genetic subdivision often fail. Objective The aim of our study was to use population genomics methods to identify the subtle subdivisions and demographic history of the Omicron variant, in addition to those captured by the Pango lineage. Methods We used a combination of an evolutionary network approach and multivariate statistical protocols to understand the subdivision and spread of the Omicron variant. We identified subdivisions within the BA.1 and BA.2 lineages and further identified the mutations associated with each cluster. We further characterized the overall genomic diversity of the Omicron variant and assessed the selection pressure for each of the genetic clusters identified. Results We observed concordant results, using two different methods to understand genetic subdivision. The overall pattern of subdivision in the Omicron variant was in broad agreement with the Pango lineage definition. Further, 1 cluster of the BA.1 lineage and 3 clusters of the BA.2 lineage revealed statistically significant signatures of selection or demographic expansion (Tajima’s D<−2), suggesting the role of microevolutionary processes in the spread of the virus. Conclusions We provide an easy framework for assessing the genetic structure and demographic history of SARS-CoV-2, which can be particularly useful for understanding the local history of the virus. We identified important mutations that are advantageous to some lineages of Omicron and aid in the transmission of the virus. This is crucial information for policy makers, as preventive measures can be designed to mitigate further spread based on a holistic understanding of the variability of the virus and the evolutionary processes aiding its spread.

Publisher

JMIR Publications Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference26 articles.

1. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

2. A pneumonia outbreak associated with a new coronavirus of probable bat origin

3. World Health Organization2nd Global consultation on assessing the impact of SARS-CoV-2 variants of concern on public health interventionsWorld Health Organization202106102023-05-09https://www.who.int/publications/m/item/2nd-global-consultation-on-assessing-the-impact-of-sars-cov-2-variants-of-concern-on-public-health-interventions

4. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

5. SARS-CoV-2: from its discovery to genome structure, transcription, and replication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3