Digital Biomarkers for Well-being Through Exergame Interactions: Exploratory Study

Author:

Petsani DespoinaORCID,Konstantinidis EvdokimosORCID,Katsouli Aikaterini-MarinaORCID,Zilidou VasilikiORCID,Dias Sofia BORCID,Hadjileontiadis LeontiosORCID,Bamidis PanagiotisORCID

Abstract

Background Ecologically valid evaluations of patient states or well-being by means of new technologies is a key issue in contemporary research in health and well-being of the aging population. The in-game metrics generated from the interaction of users with serious games (SG) can potentially be used to predict or characterize a user’s state of health and well-being. There is currently an increasing body of research that investigates the use of measures of interaction with games as digital biomarkers for health and well-being. Objective The aim of this paper is to predict well-being digital biomarkers from data collected during interactions with SG, using the values of standard clinical assessment tests as ground truth. Methods The data set was gathered during the interaction with patients with Parkinson disease with the webFitForAll exergame platform, an SG engine designed to promote physical activity among older adults, patients, and vulnerable populations. The collected data, referred to as in-game metrics, represent the body movements captured by a 3D sensor camera and translated into game analytics. Standard clinical tests gathered before and after the long-term interaction with exergames (preintervention test vs postintervention test) were used to provide user baselines. Results Our results showed that in-game metrics can effectively categorize participants into groups of different cognitive and physical states. Different in-game metrics have higher descriptive values for specific tests and can be used to predict the value range for these tests. Conclusions Our results provide encouraging evidence for the value of in-game metrics as digital biomarkers and can boost the analysis of improving in-game metrics to obtain more detailed results.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health,Rehabilitation,Biomedical Engineering,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3