Embedding “Smart” Disease Coding Within Routine Electronic Medical Record Workflow: Prospective Single-Arm Trial

Author:

Mangin DeeORCID,Lawson JenniferORCID,Adamczyk KrzysztofORCID,Guenter DaleORCID

Abstract

Background Electronic medical record (EMR) chronic disease measurement can help direct primary care prevention and treatment strategies and plan health services resource management. Incomplete data and poor consistency of coded disease values within EMR problem lists are widespread issues that limit primary and secondary uses of these data. These issues were shared by the McMaster University Sentinel and Information Collaboration (MUSIC), a primary care practice-based research network (PBRN) located in Hamilton, Ontario, Canada. Objective We sought to develop and evaluate the effectiveness of new EMR interface tools aimed at improving the quantity and the consistency of disease codes recorded within the disease registry across the MUSIC PBRN. Methods We used a single-arm prospective trial design with preintervention and postintervention data analysis to assess the effect of the intervention on disease recording volume and quality. The MUSIC network holds data on over 75,080 patients, 37,212 currently rostered. There were 4 MUSIC network clinician champions involved in gap analysis of the disease coding process and in the iterative design of new interface tools. We leveraged terminology standards and factored EMR workflow and usability into a new interface solution that aimed to optimize code selection volume and quality while minimizing physician time burden. The intervention was integrated as part of usual clinical workflow during routine billing activities. Results After implementation of the new interface (June 25, 2017), we assessed the disease registry codes at 3 and 6 months (intervention period) to compare their volume and quality to preintervention levels (baseline period). A total of 17,496 International Classification of Diseases, 9th Revision (ICD9) code values were recorded in the disease registry during the 11.5-year (2006 to mid-2017) baseline period. A large gain in disease recording occurred in the intervention period (8516/17,496, 48.67% over baseline), resulting in a total of 26,774 codes. The coding rate increased by a factor of 11.2, averaging 1419 codes per month over the baseline average rate of 127 codes per month. The proportion of preferred ICD9 codes increased by 17.03% in the intervention period (11,007/17,496, 62.91% vs 7417/9278, 79.94%; χ21=819.4; P<.001). A total of 45.03% (4178/9278) of disease codes were entered by way of the new screen prompt tools, with significant increases between quarters (Jul-Sep: 2507/6140, 40.83% vs Oct-Dec: 1671/3148, 53.08%; χ21=126.2; P<.001). Conclusions The introduction of clinician co-designed, workflow-embedded disease coding tools is a very effective solution to the issues of poor disease coding and quality in EMRs. The substantial effectiveness in a routine care environment demonstrates usability, and the intervention detail described here should be generalizable to any setting. Significant improvements in problem list coding within primary care EMRs can be realized with minimal disruption to routine clinical workflow.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference39 articles.

1. Contribution of Primary Care to Health Systems and Health

2. Clinical Care and Health Disparities

3. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings

4. Chronic Disease Management in Primary Health Care: A Demonstration of EMR Data for Quality and Health System MonitoringCanadian Institute for Health Information2014012019-10-09https://secure.cihi.ca/free_products/Burden-of-Chronic-Diseases_PHC_2014_AiB_EN-web.pdf

5. Seniors and the Health Care System: What Is the Impact of Multiple Chronic Conditions?Canadian Institute for Health Information2011012020-07-07https://secure.cihi.ca/free_products/air-chronic_disease_aib_en.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3