Real-Time Classification of Causes of Death Using AI: Sensitivity Analysis

Author:

Pita Ferreira PatríciaORCID,Godinho Simões DiogoORCID,Pinto de Carvalho ConstançaORCID,Duarte FranciscoORCID,Fernandes EugéniaORCID,Casaca Carvalho PedroORCID,Loff José FranciscoORCID,Soares Ana PaulaORCID,Albuquerque Maria JoãoORCID,Pinto-Leite PedroORCID,Peralta-Santos AndréORCID

Abstract

Background In 2021, the European Union reported >270,000 excess deaths, including >16,000 in Portugal. The Portuguese Directorate-General of Health developed a deep neural network, AUTOCOD, which determines the primary causes of death by analyzing the free text of physicians’ death certificates (DCs). Although AUTOCOD’s performance has been established, it remains unclear whether its performance remains consistent over time, particularly during periods of excess mortality. Objective This study aims to assess the sensitivity and other performance metrics of AUTOCOD in classifying underlying causes of death compared with manual coding to identify specific causes of death during periods of excess mortality. Methods We included all DCs between 2016 and 2019. AUTOCOD’s performance was evaluated by calculating various performance metrics, such as sensitivity, specificity, positive predictive value (PPV), and F1-score, using a confusion matrix. This compared International Statistical Classification of Diseases and Health-Related Problems, 10th Revision (ICD-10), classifications of DCs by AUTOCOD with those by human coders at the Directorate-General of Health (gold standard). Subsequently, we compared periods without excess mortality with periods of excess, severe, and extreme excess mortality. We defined excess mortality as 2 consecutive days with a Z score above the 95% baseline limit, severe excess mortality as 2 consecutive days with a Z score >4 SDs, and extreme excess mortality as 2 consecutive days with a Z score >6 SDs. Finally, we repeated the analyses for the 3 most common ICD-10 chapters focusing on block-level classification. Results We analyzed a large data set comprising 330,098 DCs classified by both human coders and AUTOCOD. AUTOCOD demonstrated high sensitivity (≥0.75) for 10 ICD-10 chapters examined, with values surpassing 0.90 for the more prevalent chapters (chapter II—“Neoplasms,” chapter IX—“Diseases of the circulatory system,” and chapter X—“Diseases of the respiratory system”), accounting for 67.69% (223,459/330,098) of all human-coded causes of death. No substantial differences were observed in these high-sensitivity values when comparing periods without excess mortality with periods of excess, severe, and extreme excess mortality. The same holds for specificity, which exceeded 0.96 for all chapters examined, and for PPV, which surpassed 0.75 in 9 chapters, including the more prevalent ones. When considering block classification within the 3 most common ICD-10 chapters, AUTOCOD maintained a high performance, demonstrating high sensitivity (≥0.75) for 13 ICD-10 blocks, high PPV for 9 blocks, and specificity of >0.98 in all blocks, with no significant differences between periods without excess mortality and those with excess mortality. Conclusions Our findings indicate that, during periods of excess and extreme excess mortality, AUTOCOD’s performance remains unaffected by potential text quality degradation because of pressure on health services. Consequently, AUTOCOD can be dependably used for real-time cause-specific mortality surveillance even in extreme excess mortality situations.

Publisher

JMIR Publications Inc.

Reference37 articles.

1. Graphs and mapsEuroMOMO2023-04-13https://www.euromomo.eu/graphs-and-maps/

2. Excess all-cause mortality during the COVID-19 pandemic in Europe – preliminary pooled estimates from the EuroMOMO network, March to April 2020

3. SICO - eVMVigilância de Mortalidade2021-11-08https://evm.min-saude.pt/#shiny-tab-info_eVM

4. International Statistical Classification of Diseases and Health-Related Problems, 10th Revision, 5th Edition, 2016World Health Organization20152021-11-09https://apps.who.int/iris/handle/10665/246208

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3