Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis

Author:

Khetran Saima RehmanORCID,Mustafa RomaORCID

Abstract

Background COVID-19 and Middle East Respiratory Syndrome are two pandemic respiratory diseases caused by coronavirus species. The novel disease COVID-19 caused by SARS-CoV-2 was first reported in Wuhan, Hubei Province, China, in December 2019, and became a pandemic within 2-3 months, affecting social and economic platforms worldwide. Despite the rapid development of vaccines, there have been obstacles to their distribution, including a lack of fundamental resources, poor immunization, and manual vaccine replication. Several variants of the original Wuhan strain have emerged in the last 3 years, which can pose a further challenge for control and vaccine development. Objective The aim of this study was to comprehensively analyze mutations in SARS-CoV-2 variants of concern (VoCs) using a bioinformatics approach toward identifying novel mutations that may be helpful in developing new vaccines by targeting these sites. Methods Reference sequences of the SARS-CoV-2 spike (YP_009724390) and nucleocapsid (YP_009724397) proteins were compared to retrieved sequences of isolates of four VoCs from 14 countries for mutational and evolutionary analyses. Multiple sequence alignment was performed and phylogenetic trees were constructed by the neighbor-joining method with 1000 bootstrap replicates using MEGA (version 6). Mutations in amino acid sequences were analyzed using the MultAlin online tool (version 5.4.1). Results Among the four VoCs, a total of 143 nonsynonymous mutations and 8 deletions were identified in the spike and nucleocapsid proteins. Multiple sequence alignment and amino acid substitution analysis revealed new mutations, including G72W, M2101I, L139F, 209-211 deletion, G212S, P199L, P67S, I292T, and substitutions with unknown amino acid replacement, reported in Egypt (MW533289), the United Kingdom (MT906649), and other regions. The variants B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), characterized by higher transmissibility and lethality, harbored the amino acid substitutions D614G, R203K, and G204R with higher prevalence rates in most sequences. Phylogenetic analysis among the novel SARS-CoV-2 variant proteins and some previously reported β-coronavirus proteins indicated that either the evolutionary clade was weakly supported or not supported at all by the β-coronavirus species. Conclusions This study could contribute toward gaining a better understanding of the basic nature of SARS-CoV-2 and its four major variants. The numerous novel mutations detected could also provide a better understanding of VoCs and help in identifying suitable mutations for vaccine targets. Moreover, these data offer evidence for new types of mutations in VoCs, which will provide insight into the epidemiology of SARS-CoV-2.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3