Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System

Author:

Malden Deborah EORCID,Tartof Sara YORCID,Ackerson Bradley KORCID,Hong VennisORCID,Skarbinski JacekORCID,Yau VincentORCID,Qian LeiORCID,Fischer HeidiORCID,Shaw Sally FORCID,Caparosa SusanORCID,Xie FagenORCID

Abstract

Background Natural language processing (NLP) of unstructured text from electronic medical records (EMR) can improve the characterization of COVID-19 signs and symptoms, but large-scale studies demonstrating the real-world application and validation of NLP for this purpose are limited. Objective The aim of this paper is to assess the contribution of NLP when identifying COVID-19 signs and symptoms from EMR. Methods This study was conducted in Kaiser Permanente Southern California, a large integrated health care system using data from all patients with positive SARS-CoV-2 laboratory tests from March 2020 to May 2021. An NLP algorithm was developed to extract free text from EMR on 12 established signs and symptoms of COVID-19, including fever, cough, headache, fatigue, dyspnea, chills, sore throat, myalgia, anosmia, diarrhea, vomiting or nausea, and abdominal pain. The proportion of patients reporting each symptom and the corresponding onset dates were described before and after supplementing structured EMR data with NLP-extracted signs and symptoms. A random sample of 100 chart-reviewed and adjudicated SARS-CoV-2–positive cases were used to validate the algorithm performance. Results A total of 359,938 patients (mean age 40.4 [SD 19.2] years; 191,630/359,938, 53% female) with confirmed SARS-CoV-2 infection were identified over the study period. The most common signs and symptoms identified through NLP-supplemented analyses were cough (220,631/359,938, 61%), fever (185,618/359,938, 52%), myalgia (153,042/359,938, 43%), and headache (144,705/359,938, 40%). The NLP algorithm identified an additional 55,568 (15%) symptomatic cases that were previously defined as asymptomatic using structured data alone. The proportion of additional cases with each selected symptom identified in NLP-supplemented analysis varied across the selected symptoms, from 29% (63,742/220,631) of all records for cough to 64% (38,884/60,865) of all records with nausea or vomiting. Of the 295,305 symptomatic patients, the median time from symptom onset to testing was 3 days using structured data alone, whereas the NLP algorithm identified signs or symptoms approximately 1 day earlier. When validated against chart-reviewed cases, the NLP algorithm successfully identified signs and symptoms with consistently high sensitivity (ranging from 87% to 100%) and specificity (94% to 100%). Conclusions These findings demonstrate that NLP can identify and characterize a broad set of COVID-19 signs and symptoms from unstructured EMR data with enhanced detail and timeliness compared with structured data alone.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3