Evaluating Web-Based Automatic Transcription for Alzheimer Speech Data: Transcript Comparison and Machine Learning Analysis

Author:

Soroski ThomasORCID,da Cunha Vasco ThiagoORCID,Newton-Mason SallyORCID,Granby SaffrinORCID,Lewis CaitlinORCID,Harisinghani AnujORCID,Rizzo MatteoORCID,Conati CristinaORCID,Murray GabrielORCID,Carenini GiuseppeORCID,Field Thalia SORCID,Jang HyejuORCID

Abstract

Background Speech data for medical research can be collected noninvasively and in large volumes. Speech analysis has shown promise in diagnosing neurodegenerative disease. To effectively leverage speech data, transcription is important, as there is valuable information contained in lexical content. Manual transcription, while highly accurate, limits the potential scalability and cost savings associated with language-based screening. Objective To better understand the use of automatic transcription for classification of neurodegenerative disease, namely, Alzheimer disease (AD), mild cognitive impairment (MCI), or subjective memory complaints (SMC) versus healthy controls, we compared automatically generated transcripts against transcripts that went through manual correction. Methods We recruited individuals from a memory clinic (“patients”) with a diagnosis of mild-to-moderate AD, (n=44, 30%), MCI (n=20, 13%), SMC (n=8, 5%), as well as healthy controls (n=77, 52%) living in the community. Participants were asked to describe a standardized picture, read a paragraph, and recall a pleasant life experience. We compared transcripts generated using Google speech-to-text software to manually verified transcripts by examining transcription confidence scores, transcription error rates, and machine learning classification accuracy. For the classification tasks, logistic regression, Gaussian naive Bayes, and random forests were used. Results The transcription software showed higher confidence scores (P<.001) and lower error rates (P>.05) for speech from healthy controls compared with patients. Classification models using human-verified transcripts significantly (P<.001) outperformed automatically generated transcript models for both spontaneous speech tasks. This comparison showed no difference in the reading task. Manually adding pauses to transcripts had no impact on classification performance. However, manually correcting both spontaneous speech tasks led to significantly higher performances in the machine learning models. Conclusions We found that automatically transcribed speech data could be used to distinguish patients with a diagnosis of AD, MCI, or SMC from controls. We recommend a human verification step to improve the performance of automatic transcripts, especially for spontaneous tasks. Moreover, human verification can focus on correcting errors and adding punctuation to transcripts. However, manual addition of pauses is not needed, which can simplify the human verification step to more efficiently process large volumes of speech data.

Publisher

JMIR Publications Inc.

Subject

Geriatrics and Gerontology,Health Informatics,Gerontology,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3