Abstract
A major problem in mental health clinical trials, such as depression, is low assay sensitivity in primary outcome measures. This has contributed to clinical trial failures, resulting in the exodus of the pharmaceutical industry from the Central Nervous System space. This reduced assay sensitivity in psychiatry outcome measures stems from inappropriately broad measures, recall bias, and poor interrater reliability. Limitations in the ability of traditional measures to differentiate between the trait versus state-like nature of individual depressive symptoms also contributes to measurement error in clinical trials. In this viewpoint, we argue that ecological momentary assessment (EMA)—frequent, real time, in-the-moment assessments of outcomes, delivered via smartphone—can both overcome these psychometric challenges and reduce clinical trial failures by increasing assay sensitivity and minimizing recall and rater bias. Used in this manner, EMA has the potential to further our understanding of treatment response by allowing for the assessment of dynamic interactions between treatment and distinct symptom response.
Subject
Psychiatry and Mental health
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献