Assessing Bias in Population Size Estimates Among Hidden Populations When Using the Service Multiplier Method Combined With Respondent-Driven Sampling Surveys: Survey Study

Author:

Chabata Sungai TORCID,Fearon ElizabethORCID,Webb Emily LORCID,Weiss Helen AORCID,Hargreaves James RORCID,Cowan Frances MORCID

Abstract

Background Population size estimates (PSEs) for hidden populations at increased risk of HIV, including female sex workers (FSWs), are important to inform public health policy and resource allocation. The service multiplier method (SMM) is commonly used to estimate the sizes of hidden populations. We used this method to obtain PSEs for FSWs at 9 sites in Zimbabwe and explored methods for assessing potential biases that could arise in using this approach. Objective This study aimed to guide the assessment of biases that arise when estimating the population sizes of hidden populations using the SMM combined with respondent-driven sampling (RDS) surveys. Methods We conducted RDS surveys at 9 sites in late 2013, where the Sisters with a Voice program (the program), which collects program visit data of FSWs, was also present. Using the SMM, we obtained PSEs for FSWs at each site by dividing the number of FSWs who attended the program, based on program records, by the RDS-II weighted proportion of FSWs who reported attending this program in the previous 6 months in the RDS surveys. Both the RDS weighting and SMM make a number of assumptions, potentially leading to biases if the assumptions are not met. To test these assumptions, we used convergence and bottleneck plots to assess seed dependence of RDS-II proportion estimates, chi-square tests to assess if there was an association between the characteristics of FSWs and their knowledge of program existence, and logistic regression to compare the characteristics of FSWs attending the program with those recruited to RDS surveys. Results The PSEs ranged from 194 (95% CI 62-325) to 805 (95% CI 456-1142) across 9 sites from May to November 2013. The 95% CIs for the majority of sites were wide. In some sites, the RDS-II proportion of women who reported program use in the RDS surveys may have been influenced by the characteristics of selected seeds, and we also observed bottlenecks in some sites. There was no evidence of association between characteristics of FSWs and knowledge of program existence, and in the majority of sites, there was no evidence that the characteristics of the populations differed between RDS and program data. Conclusions We used a series of rigorous methods to explore potential biases in our PSEs. We were able to identify the biases and their potential direction, but we could not determine the ultimate direction of these biases in our PSEs. We have evidence that the PSEs in most sites may be biased and a suggestion that the bias is toward underestimation, and this should be considered if the PSEs are to be used. These tests for bias should be included when undertaking population size estimation using the SMM combined with RDS surveys.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3