A Natural Language Processing–Assisted Extraction System for Gleason Scores: Development and Usability Study

Author:

Yu ShunORCID,Le AnhORCID,Feld EmilyORCID,Schriver EmilyORCID,Gabriel PeterORCID,Doucette AbigailORCID,Narayan VivekORCID,Feldman MichaelORCID,Schwartz LaurenORCID,Maxwell KaraORCID,Mowery DanielleORCID

Abstract

Background Natural language processing (NLP) offers significantly faster variable extraction compared to traditional human extraction but cannot interpret complicated notes as well as humans can. Thus, we hypothesized that an “NLP-assisted” extraction system, which uses humans for complicated notes and NLP for uncomplicated notes, could produce faster extraction without compromising accuracy. Objective The aim of this study was to develop and pilot an NLP-assisted extraction system to leverage the strengths of both human and NLP extraction of prostate cancer Gleason scores. Methods We collected all available clinical and pathology notes for prostate cancer patients in an unselected academic biobank cohort. We developed an NLP system to extract prostate cancer Gleason scores from both clinical and pathology notes. Next, we designed and implemented the NLP-assisted extraction system algorithm to categorize notes into “uncomplicated” and “complicated” notes. Uncomplicated notes were assigned to NLP extraction and complicated notes were assigned to human extraction. We randomly reviewed 200 patients to assess the accuracy and speed of our NLP-assisted extraction system and compared it to NLP extraction alone and human extraction alone. Results Of the 2051 patients in our cohort, the NLP system extracted a prostate surgery Gleason score from 1147 (55.92%) patients and a prostate biopsy Gleason score from 1624 (79.18%) patients. Our NLP-assisted extraction system had an overall accuracy rate of 98.7%, which was similar to the accuracy of human extraction alone (97.5%; P=.17) and significantly higher than the accuracy of NLP extraction alone (95.3%; P<.001). Moreover, our NLP-assisted extraction system reduced the workload of human extractors by approximately 95%, resulting in an average extraction time of 12.7 seconds per patient (vs 256.1 seconds per patient for human extraction alone). Conclusions We demonstrated that an NLP-assisted extraction system was able to achieve much faster Gleason score extraction compared to traditional human extraction without sacrificing accuracy.

Publisher

JMIR Publications Inc.

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3