Using Large-scale Social Media Analytics to Understand Patient Perspectives About Urinary Tract Infections: Thematic Analysis

Author:

Gonzalez GabrielaORCID,Vaculik KristinaORCID,Khalil CarineORCID,Zektser YuliyaORCID,Arnold CoreyORCID,Almario Christopher VORCID,Spiegel BrennanORCID,Anger JenniferORCID

Abstract

Background Current qualitative literature about the experiences of women dealing with urinary tract infections (UTIs) is limited to patients recruited from tertiary centers and medical clinics. However, traditional focus groups and interviews may limit what patients share. Using digital ethnography, we analyzed free-range conversations of an online community. Objective This study aimed to investigate and characterize the patient perspectives of women dealing with UTIs using digital ethnography. Methods A data-mining service was used to identify online posts. A thematic analysis was conducted on a subset of the identified posts. Additionally, a latent Dirichlet allocation (LDA) probabilistic topic modeling method was applied to review the entire data set using a semiautomatic approach. Each identified topic was generated as a discrete distribution over the words in the collection, which can be thought of as a word cloud. We also performed a thematic analysis of the word cloud topic model results. Results A total of 83,589 posts by 53,460 users from 859 websites were identified. Our hand-coding inductive analysis yielded the following 7 themes: quality-of-life impact, knowledge acquisition, support of the online community, health care utilization, risk factors and prevention, antibiotic treatment, and alternative therapies. Using the LDA topic model method, 105 themes were identified and consolidated into 9 categories. Of the LDA-derived themes, 25.7% (27/105) were related to online community support, and 22% (23/105) focused on UTI risk factors and prevention strategies. Conclusions Our large-scale social media analysis supports the importance and reproducibility of using online data to comprehend women’s UTI experience. This inductive thematic analysis highlights patient behavior, self-empowerment, and online media utilization by women to address their health concerns in a safe, anonymous way.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3