Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management

Author:

Ramirez MagalyORCID,Wu ShinyiORCID,Jin HaomiaoORCID,Ell KathleenORCID,Gross-Schulman SandraORCID,Myerchin Sklaroff LauraORCID,Guterman JeffreyORCID

Abstract

Background Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)–a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care system–tested a fully automated telephonic assessment (ATA) depression monitoring system serving low-income patients with diabetes. Objective The aim of this study was to determine patient acceptance of ATA calls over time, and to identify factors predicting long-term patient acceptance of ATA calls. Methods We conducted two analyses using data from the DCAT technology-facilitated care arm, in which for 12 months the ATA system periodically assessed depression symptoms, monitored treatment adherence, prompted self-care behaviors, and inquired about patients’ needs for provider contact. Patients received assessments at 6, 12, and 18 months using Likert-scale measures of willingness to use ATA calls, preferred mode of reach, perceived ease of use, usefulness, nonintrusiveness, privacy/security, and long-term usefulness. For the first analysis (patient acceptance over time), we computed descriptive statistics of these measures. In the second analysis (predictive factors), we collapsed patients into two groups: those reporting “high” versus “low” willingness to use ATA calls. To compare them, we used independent t tests for continuous variables and Pearson chi-square tests for categorical variables. Next, we jointly entered independent factors found to be significantly associated with 18-month willingness to use ATA calls at the univariate level into a logistic regression model with backward selection to identify predictive factors. We performed a final logistic regression model with the identified significant predictive factors and reported the odds ratio estimates and 95% confidence intervals. Results At 6 and 12 months, respectively, 89.6% (69/77) and 63.7% (49/77) of patients “agreed” or “strongly agreed” that they would be willing to use ATA calls in the future. At 18 months, 51.0% (64/125) of patients perceived ATA calls as useful and 59.7% (46/77) were willing to use the technology. Moreover, in the first 6 months, most patients reported that ATA calls felt private/secure (75.9%, 82/108) and were easy to use (86.2%, 94/109), useful (65.1%, 71/109), and nonintrusive (87.2%, 95/109). Perceived usefulness, however, decreased to 54.1% (59/109) in the second 6 months of the trial. Factors predicting willingness to use ATA calls at the 18-month follow-up were perceived privacy/security and long-term perceived usefulness of ATA calls. No patient characteristics were significant predictors of long-term acceptance. Conclusions In the short term, patients are generally accepting of ATA calls for depression monitoring, with ATA call design and the care management intervention being primary factors influencing patient acceptance. Acceptance over the long term requires that the system be perceived as private/secure, and that it be constantly useful for patients’ needs of awareness of feelings, self-care reminders, and connectivity with health care providers. Trial Registration ClinicalTrials.gov NCT01781013; https://clinicaltrials.gov/ct2/show/NCT01781013 (Archived by WebCite at http://www.webcitation.org/6e7NGku56)

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Reference69 articles.

1. Medicare ProgramOffice of the Federal Register20142015-12-30Revisions to Payment Policies under the Physician Fee Schedule, Clinical Laboratory Fee Schedule, Access to Identifiable Data for the Center for Medicare and Medicaid Innovation Models & Other Revisions to Part B for CY 2015. (CMS-1612-P)https://www.federalregister.gov/articles/2014/11/13/2014-26183/medicare-program-revisions-to-payment-policies-under-the-physician-fee-schedule-clinical-laboratory

2. Connected Health: A Review Of Technologies And Strategies To Improve Patient Care With Telemedicine And Telehealth

3. Evaluating the Evidence Base for the Use of Home Telehealth Remote Monitoring in Elderly with Heart Failure

4. Impact of telemonitoring at home on the management of elderly patients with congestive heart failure

5. Home telemonitoring for congestive heart failure: a systematic review and meta-analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3