Conditional Probability Joint Extraction of Nested Biomedical Events: Design of a Unified Extraction Framework Based on Neural Networks

Author:

Wang YanORCID,Wang JianORCID,Lu HuiyiORCID,Xu BingORCID,Zhang YijiaORCID,Banbhrani Santosh KumarORCID,Lin HongfeiORCID

Abstract

BackgroundEvent extraction is essential for natural language processing. In the biomedical field, the nested event phenomenon (event A as a participating role of event B) makes extracting this event more difficult than extracting a single event. Therefore, the performance of nested biomedical events is always underwhelming. In addition, previous works relied on a pipeline to build an event extraction model, which ignored the dependence between trigger recognition and event argument detection tasks and produced significant cascading errors.ObjectiveThis study aims to design a unified framework to jointly train biomedical event triggers and arguments and improve the performance of extracting nested biomedical events.MethodsWe proposed an end-to-end joint extraction model that considers the probability distribution of triggers to alleviate cascading errors. Moreover, we integrated the syntactic structure into an attention-based gate graph convolutional network to capture potential interrelations between triggers and related entities, which improved the performance of extracting nested biomedical events.ResultsThe experimental results demonstrated that our proposed method achieved the best F1 score on the multilevel event extraction biomedical event extraction corpus and achieved a favorable performance on the biomedical natural language processing shared task 2011 Genia event corpus.ConclusionsOur conditional probability joint extraction model is good at extracting nested biomedical events because of the joint extraction mechanism and the syntax graph structure. Moreover, as our model did not rely on external knowledge and specific feature engineering, it had a particular generalization performance.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3