Models and Approaches for Comprehension of Dysarthric Speech Using Natural Language Processing: Systematic Review

Author:

Alaka BenardORCID,Shibwabo BernardORCID

Abstract

Background Speech intelligibility and speech comprehension for dysarthric speech has attracted much attention recently. Dysarthria is characterized by irregularities in the speed, strength, pitch, breath control, range, steadiness, and accuracy of muscle movements required for articulatory aspects of speech production. Objective This study examined the contributions made by other studies involved in dysarthric speech comprehension. We focused on the modes of meaning extraction used in generalizing speaker-listener underpinnings in light of semantic ontology extraction as a desired technique, applied method types, speech representations used, and databases sourced from. Methods This study involved a systematic literature review using 7 electronic databases: Cochrane Database of Systematic Reviews, Web of Science Core Collection, Scopus, PubMed, ACM, IEEE Xplore, and Google Scholar. The main eligibility criterion was the extraction of meaning from dysarthric speech using natural language processing or understanding approaches to improve on dysarthric speech comprehension. In total, out of 834 search results, 30 studies that matched the eligibility requirements were acquired following screening by 2 independent reviewers, with a lack of consensus being resolved through joint discussion or consultation with a third party. In order to evaluate the studies’ methodological quality, the risk of bias assessment was based on the Cochrane risk-of-bias tool version 2 (RoB2) with 23 of the studies (77%) registering low risk of bias and 7 studies (33%) raising some concern over the risk of bias. The overall quality assessment of the study was done using TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis). Results Following a review of 30 primary studies, this study revealed that the reviewed studies focused on natural language understanding or clinical approaches, with an increase in proposed solutions from 2020 onwards. Most studies relied on speaker-dependent speech features, while others used speech patterns, semantic knowledge, or hybrid approaches. The prevalent use of vector representation aligned with natural language understanding models, while Mel-frequency cepstral coefficient representation and no representation approaches were applied in neural networks. Hybrid representation studies aimed to reconstruct dysarthric speech or improve comprehension. Comprehensive databases, like TORGO and UA-Speech, were commonly used in combination with other curated databases, while primary data was preferred for specific or unique research objectives. Conclusions We found significant gaps in dysarthric speech comprehension characterized by the lack of inclusion of important listener or speech-independent features in the speech representations, mode of extraction, and data sources used. Further research is therefore proposed regarding the formulation of models that accommodate listener and speech-independent features through semantic ontologies that will be useful in the inclusion of key features of listener and speech-independent features for meaning extraction of dysarthric speech.

Publisher

JMIR Publications Inc.

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph methods to infer spatial disturbances: Application to Huntington's Disease's speech;Cortex;2024-07

2. Deep Learning Based Speech Recognition for Hyperkinetic Dysarthria Disorder;2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3