A Biomedical Knowledge Graph System to Propose Mechanistic Hypotheses for Real-World Environmental Health Observations: Cohort Study and Informatics Application

Author:

Fecho KaramarieORCID,Bizon ChrisORCID,Miller FrederickORCID,Schurman ShepherdORCID,Schmitt CharlesORCID,Xue WilliamORCID,Morton KennethORCID,Wang PatrickORCID,Tropsha AlexanderORCID

Abstract

Background Knowledge graphs are a common form of knowledge representation in biomedicine and many other fields. We developed an open biomedical knowledge graph–based system termed Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP). ROBOKOP consists of both a front-end user interface and a back-end knowledge graph. The ROBOKOP user interface allows users to posit questions and explore answer subgraphs. Users can also posit questions through direct Cypher query of the underlying knowledge graph, which currently contains roughly 6 million nodes or biomedical entities and 140 million edges or predicates describing the relationship between nodes, drawn from over 30 curated data sources. Objective We aimed to apply ROBOKOP to survey data on workplace exposures and immune-mediated diseases from the Environmental Polymorphisms Registry (EPR) within the National Institute of Environmental Health Sciences. Methods We analyzed EPR survey data and identified 45 associations between workplace chemical exposures and immune-mediated diseases, as self-reported by study participants (n= 4574), with 20 associations significant at P<.05 after false discovery rate correction. We then used ROBOKOP to (1) validate the associations by determining whether plausible connections exist within the ROBOKOP knowledge graph and (2) propose biological mechanisms that might explain them and serve as hypotheses for subsequent testing. We highlight the following three exemplar associations: carbon monoxide-multiple sclerosis, ammonia-asthma, and isopropanol-allergic disease. Results ROBOKOP successfully returned answer sets for three queries that were posed in the context of the driving examples. The answer sets included potential intermediary genes, as well as supporting evidence that might explain the observed associations. Conclusions We demonstrate real-world application of ROBOKOP to generate mechanistic hypotheses for associations between workplace chemical exposures and immune-mediated diseases. We expect that ROBOKOP will find broad application across many biomedical fields and other scientific disciplines due to its generalizability, speed to discovery and generation of mechanistic hypotheses, and open nature.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3