Revealing the Mysteries of Population Mobility Amid the COVID-19 Pandemic in Canada: Comparative Analysis With Internet of Things–Based Thermostat Data and Google Mobility Insights

Author:

Sahu Kirti SundarORCID,Dubin Joel AORCID,Majowicz Shannon EORCID,Liu SamORCID,Morita Plinio PORCID

Abstract

Background The COVID-19 pandemic necessitated public health policies to limit human mobility and curb infection spread. Human mobility, which is often underestimated, plays a pivotal role in health outcomes, impacting both infectious and chronic diseases. Collecting precise mobility data is vital for understanding human behavior and informing public health strategies. Google’s GPS-based location tracking, which is compiled in Google Mobility Reports, became the gold standard for monitoring outdoor mobility during the pandemic. However, indoor mobility remains underexplored. Objective This study investigates in-home mobility data from ecobee’s smart thermostats in Canada (February 2020 to February 2021) and compares it directly with Google’s residential mobility data. By assessing the suitability of smart thermostat data, we aim to shed light on indoor mobility patterns, contributing valuable insights to public health research and strategies. Methods Motion sensor data were acquired from the ecobee “Donate Your Data” initiative via Google’s BigQuery cloud platform. Concurrently, residential mobility data were sourced from the Google Mobility Report. This study centered on 4 Canadian provinces—Ontario, Quebec, Alberta, and British Columbia—during the period from February 15, 2020, to February 14, 2021. Data processing, analysis, and visualization were conducted on the Microsoft Azure platform using Python (Python Software Foundation) and R programming languages (R Foundation for Statistical Computing). Our investigation involved assessing changes in mobility relative to the baseline in both data sets, with the strength of this relationship assessed using Pearson and Spearman correlation coefficients. We scrutinized daily, weekly, and monthly variations in mobility patterns across the data sets and performed anomaly detection for further insights. Results The results revealed noteworthy week-to-week and month-to-month shifts in population mobility within the chosen provinces, aligning with pandemic-driven policy adjustments. Notably, the ecobee data exhibited a robust correlation with Google’s data set. Examination of Google’s daily patterns detected more pronounced mobility fluctuations during weekdays, a trend not mirrored in the ecobee data. Anomaly detection successfully identified substantial mobility deviations coinciding with policy modifications and cultural events. Conclusions This study’s findings illustrate the substantial influence of the Canadian stay-at-home and work-from-home policies on population mobility. This impact was discernible through both Google’s out-of-house residential mobility data and ecobee’s in-house smart thermostat data. As such, we deduce that smart thermostats represent a valid tool for facilitating intelligent monitoring of population mobility in response to policy-driven shifts.

Publisher

JMIR Publications Inc.

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3