Integrating Clinical Data and Medical Imaging in Lung Cancer: Feasibility Study Using the Observational Medical Outcomes Partnership Common Data Model Extension

Author:

Ji HyerimORCID,Kim SeokORCID,Sunwoo LeonardORCID,Jang SowonORCID,Lee Ho-YoungORCID,Yoo SooyoungORCID

Abstract

Background Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data. However, integrating medical imaging remains a challenge. Objective This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal research. Methods Our approach included the analysis and selection of digital imaging and communications in medicine header tags, validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM), constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables—IMAGING_STUDY, IMAGING_SERIES, IMAGING_ANNOTATION, and FILEPATH—to standardize various imaging-related data and link to clinical data. Results This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records, illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings. Conclusions These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its wide-ranging utility for medical conditions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3