A Case Demonstration of the Open Health Natural Language Processing Toolkit From the National COVID-19 Cohort Collaborative and the Researching COVID to Enhance Recovery Programs for a Natural Language Processing System for COVID-19 or Postacute Sequelae of SARS CoV-2 Infection: Algorithm Development and Validation

Author:

Wen AndrewORCID,Wang LiweiORCID,He HuanORCID,Fu SunyangORCID,Liu SijiaORCID,Hanauer David AORCID,Harris Daniel RORCID,Kavuluru RamakanthORCID,Zhang RuiORCID,Natarajan KarthikORCID,Pavinkurve Nishanth PORCID,Hajagos JanosORCID,Rajupet SrithaORCID,Lingam VeenaORCID,Saltz MaryORCID,Elowsky CoreyORCID,Moffitt Richard AORCID,Koraishy Farrukh MORCID,Palchuk Matvey BORCID,Donovan JordanORCID,Lingrey LoraORCID,Stone-DerHagopian GaroORCID,Miller Robert TORCID,Williams Andrew EORCID,Leese Peter JORCID,Kovach Paul IORCID,Pfaff Emily RORCID,Zemmel MikhailORCID,Pates Robert DORCID,Guthe NickORCID,Haendel Melissa AORCID,Chute Christopher GORCID,Liu HongfangORCID, ,

Abstract

Background A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC). Objective This study aims to highlight the current limitations of existing NLP algorithm development approaches that are exacerbated by NLP tasks surrounding emergent clinical concepts and to illustrate our approach to addressing these issues through the use case of developing an NLP system for the signs and symptoms of COVID-19 and PASC. Methods We used 2 preexisting studies on PASC as a baseline to determine a set of concepts that should be extracted by NLP. This concept list was then used in conjunction with the Unified Medical Language System to autonomously generate an expanded lexicon to weakly annotate a training set, which was then reviewed by a human expert to generate a fine-tuned NLP algorithm. The annotations from a fully human-annotated test set were then compared with NLP results from the fine-tuned algorithm. The NLP algorithm was then deployed to 10 additional sites that were also running our NLP infrastructure. Of these 10 sites, 5 were used to conduct a federated evaluation of the NLP algorithm. Results An NLP algorithm consisting of 12,234 unique normalized text strings corresponding to 2366 unique concepts was developed to extract COVID-19 or PASC signs and symptoms. An unweighted mean dictionary coverage of 77.8% was found for the 5 sites. Conclusions The evolutionary and time-critical nature of the PASC NLP task significantly complicates existing approaches to NLP algorithm development. In this work, we present a hybrid approach using the Open Health Natural Language Processing Toolkit aimed at addressing these needs with a dictionary-based weak labeling step that minimizes the need for additional expert annotation while still preserving the fine-tuning capabilities of expert involvement.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3