An Ontology-Based Approach to Improving Medication Appropriateness in Older Patients: Algorithm Development and Validation Study

Author:

Calvo-Cidoncha ElenaORCID,Verdinelli JuliánORCID,González-Bueno JavierORCID,López-Soto AlfonsoORCID,Camacho Hernando ConcepciónORCID,Pastor-Duran XavierORCID,Codina-Jané CarlesORCID,Lozano-Rubí RaimundoORCID

Abstract

Background Inappropriate medication in older patients with multimorbidity results in a greater risk of adverse drug events. Clinical decision support systems (CDSSs) are intended to improve medication appropriateness. One approach to improving CDSSs is to use ontologies instead of relational databases. Previously, we developed OntoPharma—an ontology-based CDSS for reducing medication prescribing errors. Objective The primary aim was to model a domain for improving medication appropriateness in older patients (chronic patient domain). The secondary aim was to implement the version of OntoPharma containing the chronic patient domain in a hospital setting. Methods A 4-step process was proposed. The first step was defining the domain scope. The chronic patient domain focused on improving medication appropriateness in older patients. A group of experts selected the following three use cases: medication regimen complexity, anticholinergic and sedative drug burden, and the presence of triggers for identifying possible adverse events. The second step was domain model representation. The implementation was conducted by medical informatics specialists and clinical pharmacists using Protégé-OWL (Stanford Center for Biomedical Informatics Research). The third step was OntoPharma-driven alert module adaptation. We reused the existing framework based on SPARQL to query ontologies. The fourth step was implementing the version of OntoPharma containing the chronic patient domain in a hospital setting. Alerts generated from July to September 2022 were analyzed. Results We proposed 6 new classes and 5 new properties, introducing the necessary changes in the ontologies previously created. An alert is shown if the Medication Regimen Complexity Index is ≥40, if the Drug Burden Index is ≥1, or if there is a trigger based on an abnormal laboratory value. A total of 364 alerts were generated for 107 patients; 154 (42.3%) alerts were accepted. Conclusions We proposed an ontology-based approach to provide support for improving medication appropriateness in older patients with multimorbidity in a scalable, sustainable, and reusable way. The chronic patient domain was built based on our previous research, reusing the existing framework. OntoPharma has been implemented in clinical practice and generates alerts, considering the following use cases: medication regimen complexity, anticholinergic and sedative drug burden, and the presence of triggers for identifying possible adverse events.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3