Use of Machine Learning Models to Differentiate Neurodevelopment Conditions Through Digitally Collected Data: Cross-Sectional Questionnaire Study

Author:

Grazioli SilviaORCID,Crippa AlessandroORCID,Buo NoemiORCID,Busti Ceccarelli SilviaORCID,Molteni MassimoORCID,Nobile MariaORCID,Salandi AntonioORCID,Trabattoni SaraORCID,Caselli GabrieleORCID,Colombo PaolaORCID

Abstract

Background Diagnosis of child and adolescent psychopathologies involves a multifaceted approach, integrating clinical observations, behavioral assessments, medical history, cognitive testing, and familial context information. Digital technologies, especially internet-based platforms for administering caregiver-rated questionnaires, are increasingly used in this field, particularly during the screening phase. The ascent of digital platforms for data collection has propelled advanced psychopathology classification methods such as supervised machine learning (ML) into the forefront of both research and clinical environments. This shift, recently called psycho-informatics, has been facilitated by gradually incorporating computational devices into clinical workflows. However, an actual integration between telemedicine and the ML approach has yet to be fulfilled. Objective Under these premises, exploring the potential of ML applications for analyzing digitally collected data may have significant implications for supporting the clinical practice of diagnosing early psychopathology. The purpose of this study was, therefore, to exploit ML models for the classification of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) using internet-based parent-reported socio-anamnestic data, aiming at obtaining accurate predictive models for new help-seeking families. Methods In this retrospective, single-center observational study, socio-anamnestic data were collected from 1688 children and adolescents referred for suspected neurodevelopmental conditions. The data included sociodemographic, clinical, environmental, and developmental factors, collected remotely through the first Italian internet-based screening tool for neurodevelopmental disorders, the Medea Information and Clinical Assessment On-Line (MedicalBIT). Random forest (RF), decision tree, and logistic regression models were developed and evaluated using classification accuracy, sensitivity, specificity, and importance of independent variables. Results The RF model demonstrated robust accuracy, achieving 84% (95% CI 82-85; P<.001) for ADHD and 86% (95% CI 84-87; P<.001) for ASD classifications. Sensitivities were also high, with 93% for ADHD and 95% for ASD. In contrast, the DT and LR models exhibited lower accuracy (DT 74%, 95% CI 71-77; P<.001 for ADHD; DT 79%, 95% CI 77-82; P<.001 for ASD; LR 61%, 95% CI 57-64; P<.001 for ADHD; LR 63%, 95% CI 60-67; P<.001 for ASD) and sensitivities (DT: 82% for ADHD and 88% for ASD; LR: 62% for ADHD and 68% for ASD). The independent variables considered for classification differed in importance between the 2 models, reflecting the distinct characteristics of the 3 ML approaches. Conclusions This study highlights the potential of ML models, particularly RF, in enhancing the diagnostic process of child and adolescent psychopathology. Altogether, the current findings underscore the significance of leveraging digital platforms and computational techniques in the diagnostic process. While interpretability remains crucial, the developed approach might provide valuable screening tools for clinicians, highlighting the significance of embedding computational techniques in the diagnostic process.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3