Feasibility of Artificial Intelligence–Based Electrocardiography Analysis for the Prediction of Obstructive Coronary Artery Disease in Patients With Stable Angina: Validation Study

Author:

Park JiesuckORCID,Yoon YeonyeeORCID,Cho YoungjinORCID,Kim JoongheeORCID

Abstract

Background Despite accumulating research on artificial intelligence–based electrocardiography (ECG) algorithms for predicting acute coronary syndrome (ACS), their application in stable angina is not well evaluated. Objective We evaluated the utility of an existing artificial intelligence–based quantitative electrocardiography (QCG) analyzer in stable angina and developed a new ECG biomarker more suitable for stable angina. Methods This single-center study comprised consecutive patients with stable angina. The independent and incremental value of QCG scores for coronary artery disease (CAD)–related conditions (ACS, myocardial injury, critical status, ST-elevation myocardial infarction, and left ventricular dysfunction) for predicting obstructive CAD confirmed by invasive angiography was examined. Additionally, ECG signals extracted by the QCG analyzer were used as input to develop a new QCG score. Results Among 723 patients with stable angina (median age 68 years; male: 470/723, 65%), 497 (69%) had obstructive CAD. QCG scores for ACS and myocardial injury were independently associated with obstructive CAD (odds ratio [OR] 1.09, 95% CI 1.03-1.17 and OR 1.08, 95% CI 1.02-1.16 per 10-point increase, respectively) but did not significantly improve prediction performance compared to clinical features. However, our new QCG score demonstrated better prediction performance for obstructive CAD (area under the receiver operating characteristic curve 0.802) than the original QCG scores, with incremental predictive value in combination with clinical features (area under the receiver operating characteristic curve 0.827 vs 0.730; P<.001). Conclusions QCG scores developed for acute conditions show limited performance in identifying obstructive CAD in stable angina. However, improvement in the QCG analyzer, through training on comprehensive ECG signals in patients with stable angina, is feasible.

Publisher

JMIR Publications Inc.

Subject

Cardiology and Cardiovascular Medicine,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3