Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study

Author:

Chen Chih-ChiORCID,Wu Cheng-TaORCID,Chen Carl P CORCID,Chung Chia-YingORCID,Chen Shann-ChingORCID,Lee Mel SORCID,Cheng Chi-TungORCID,Liao Chien-HungORCID

Abstract

Background Total hip replacement (THR) is considered the gold standard of treatment for refractory degenerative hip disorders. Identifying patients who should receive THR in the short term is important. Some conservative treatments, such as intra-articular injection administered a few months before THR, may result in higher odds of arthroplasty infection. Delayed THR after functional deterioration may result in poorer outcomes and longer waiting times for those who have been flagged as needing THR. Deep learning (DL) in medical imaging applications has recently obtained significant breakthroughs. However, the use of DL in practical wayfinding, such as short-term THR prediction, is still lacking. Objective In this study, we will propose a DL-based assistant system for patients with pelvic radiographs to identify the need for THR within 3 months. Methods We developed a convolutional neural network–based DL algorithm to analyze pelvic radiographs, predict the hip region of interest (ROI), and determine whether or not THR is required. The data set was collected from August 2008 to December 2017. The images included 3013 surgical hip ROIs that had undergone THR and 1630 nonsurgical hip ROIs. The images were split, using split-sample validation, into training (n=3903, 80%), validation (n=476, 10%), and testing (n=475, 10%) sets to evaluate the algorithm performance. Results The algorithm, called SurgHipNet, yielded an area under the receiver operating characteristic curve of 0.994 (95% CI 0.990-0.998). The accuracy, sensitivity, specificity, and F1-score of the model were 0.977, 0.920, 0932, and 0.944, respectively. Conclusions The proposed approach has demonstrated that SurgHipNet shows the ability and potential to provide efficient support in clinical decision-making; it can assist physicians in promptly determining the optimal timing for THR.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3