Monitoring Diagnostic Safety Risks in Emergency Departments: Protocol for a Machine Learning Study

Author:

Enayati MoeinORCID,Sir MustafaORCID,Zhang XingyuORCID,Parker Sarah JORCID,Duffy ElizabethORCID,Singh HardeepORCID,Mahajan PrashantORCID,Pasupathy Kalyan SORCID

Abstract

Background Diagnostic decision making, especially in emergency departments, is a highly complex cognitive process that involves uncertainty and susceptibility to errors. A combination of factors, including patient factors (eg, history, behaviors, complexity, and comorbidity), provider-care team factors (eg, cognitive load and information gathering and synthesis), and system factors (eg, health information technology, crowding, shift-based work, and interruptions) may contribute to diagnostic errors. Using electronic triggers to identify records of patients with certain patterns of care, such as escalation of care, has been useful to screen for diagnostic errors. Once errors are identified, sophisticated data analytics and machine learning techniques can be applied to existing electronic health record (EHR) data sets to shed light on potential risk factors influencing diagnostic decision making. Objective This study aims to identify variables associated with diagnostic errors in emergency departments using large-scale EHR data and machine learning techniques. Methods This study plans to use trigger algorithms within EHR data repositories to generate a large data set of records that are labeled trigger-positive or trigger-negative, depending on whether they meet certain criteria. Samples from both data sets will be validated using medical record reviews, upon which we expect to find a higher number of diagnostic safety events in the trigger-positive subset. Machine learning will be used to evaluate relationships between certain patient factors, provider-care team factors, and system-level risk factors and diagnostic safety signals in the statistically matched groups of trigger-positive and trigger-negative charts. Results This federally funded study was approved by the institutional review board of 2 academic medical centers with affiliated community hospitals. Trigger queries are being developed at both organizations, and sample cohorts will be labeled using the triggers. Machine learning techniques such as association rule mining, chi-square automated interaction detection, and classification and regression trees will be used to discover important variables that could be incorporated within future clinical decision support systems to help identify and reduce risks that contribute to diagnostic errors. Conclusions The use of large EHR data sets and machine learning to investigate risk factors (related to the patient, provider-care team, and system-level) in the diagnostic process may help create future mechanisms for monitoring diagnostic safety. International Registered Report Identifier (IRRID) DERR1-10.2196/24642

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3