Abstract
Background
Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step.
Objective
We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation to this problem.
Methods
The treatment decision DQL digital twin and the patient’s digital twin were created, trained, and evaluated on a data set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes 3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes.
Results
On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment outcome prediction, matching the clinicians’ outcomes and improving the (predicted) survival rate by +3.73% (95% CI –0.75% to 8.96%) and the dysphagia rate by +0.75% (95% CI –4.48% to 6.72%) when following DQL treatment decisions.
Conclusions
Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians in determining the optimal course of treatment and in assessing its outcomes.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献