A Factorial Randomized Controlled Trial to Optimize User Engagement With a Chatbot-Led Parenting Intervention: Protocol for the ParentText Optimisation Trial

Author:

Ambrosio Maria Da GracaORCID,Lachman Jamie MORCID,Zinzer PaulaORCID,Gwebu HlengiweORCID,Vyas SeemaORCID,Vallance IngeORCID,Calderon FranciscoORCID,Gardner FrancesORCID,Markle LaurieORCID,Stern DavidORCID,Facciola ChiaraORCID,Schley AnneORCID,Danisa Nompumelelo,Brukwe KanyisileORCID,Melendez-Torres GJORCID

Abstract

Background Violence against children (VAC) is a serious public health concern with long-lasting adverse effects. Evidence-based parenting programs are one effective means to prevent VAC; however, these interventions are not scalable in their typical in-person group format, especially in low- and middle-income countries where the need is greatest. While digital delivery, including via chatbots, offers a scalable and cost-effective means to scale up parenting programs within these settings, it is crucial to understand the key pillars of user engagement to ensure their effective implementation. Objective This study aims to investigate the most effective and cost-effective combination of external components to optimize user engagement with ParentText, an open-source chatbot-led parenting intervention to prevent VAC in Mpumalanga, South Africa. Methods This study will use a mixed methods design incorporating a 2 × 2 factorial cluster-randomized controlled trial and qualitative interviews. Parents of adolescent girls (32 clusters, 120 participants [60 parents and 60 girls aged 10 to 17 years] per cluster; N=3840 total participants) will be recruited from the Ehlanzeni and Nkangala districts of Mpumalanga. Clusters will be randomly assigned to receive 1 of the 4 engagement packages that include ParentText alone or combined with in-person sessions and a facilitated WhatsApp support group. Quantitative data collected will include pretest-posttest parent- and adolescent-reported surveys, facilitator-reported implementation data, and digitally tracked engagement data. Qualitative data will be collected from parents and facilitators through in-person or over-the-phone individual semistructured interviews and used to expand the interpretation and understanding of the quantitative findings. Results Recruitment and data collection started in August 2023 and were finalized in November 2023. The total number of participants enrolled in the study is 1009, with 744 caregivers having completed onboarding to the chatbot-led intervention. Female participants represent 92.96% (938/1009) of the sample population, whereas male participants represent 7.03% (71/1009). The average participant age is 43 (SD 9) years. Conclusions The ParentText Optimisation Trial is the first study to rigorously test engagement with a chatbot-led parenting intervention in a low- or middle-income country. The results of this study will inform the final selection of external delivery components to support engagement with ParentText in preparation for further evaluation in a randomized controlled trial in 2024. Trial Registration Open Science Framework (OSF); https://doi.org/10.17605/OSF.IO/WFXNE International Registered Report Identifier (IRRID) DERR1-10.2196/52145

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3