Patient-Level Cancer Prediction Models From a Nationwide Patient Cohort: Model Development and Validation

Author:

Lee EunsaemORCID,Jung Se YoungORCID,Hwang Hyung JuORCID,Jung JaewooORCID

Abstract

Background Nationwide population-based cohorts provide a new opportunity to build automated risk prediction models at the patient level, and claim data are one of the more useful resources to this end. To avoid unnecessary diagnostic intervention after cancer screening tests, patient-level prediction models should be developed. Objective We aimed to develop cancer prediction models using nationwide claim databases with machine learning algorithms, which are explainable and easily applicable in real-world environments. Methods As source data, we used the Korean National Insurance System Database. Every Korean in ≥40 years old undergoes a national health checkup every 2 years. We gathered all variables from the database including demographic information, basic laboratory values, anthropometric values, and previous medical history. We applied conventional logistic regression methods, light gradient boosting methods, neural networks, survival analysis, and one-class embedding classifier methods to effectively analyze high dimension data based on deep learning–based anomaly detection. Performance was measured with area under the curve and area under precision recall curve. We validated our models externally with a health checkup database from a tertiary hospital. Results The one-class embedding classifier model received the highest area under the curve scores with values of 0.868, 0.849, 0.798, 0.746, 0.800, 0.749, and 0.790 for liver, lung, colorectal, pancreatic, gastric, breast, and cervical cancers, respectively. For area under precision recall curve, the light gradient boosting models had the highest score with values of 0.383, 0.401, 0.387, 0.300, 0.385, 0.357, and 0.296 for liver, lung, colorectal, pancreatic, gastric, breast, and cervical cancers, respectively. Conclusions Our results show that it is possible to easily develop applicable cancer prediction models with nationwide claim data using machine learning. The 7 models showed acceptable performances and explainability, and thus can be distributed easily in real-world environments.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and Validation of a Colorectal Cancer Prediction Model: A Nationwide Cohort-Based Study;Digestive Diseases and Sciences;2024-04-25

2. Colorectal Cancer Epidemiology, Screening and Segmentation using CNNs;2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

3. Optimizing prognostic factors of five-year survival in gastric cancer patients using feature selection techniques with machine learning algorithms: a comparative study;BMC Medical Informatics and Decision Making;2023-04-06

4. A Brief Review of Explainable Artificial Intelligence Reviews and Methods;Explainable Machine Learning for Multimedia Based Healthcare Applications;2023

5. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022);Computer Methods and Programs in Biomedicine;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3