Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis

Author:

Meyerowitz-Katz GideonORCID,Ravi SumathyORCID,Arnolda LeonardORCID,Feng XiaoqiORCID,Maberly GlenORCID,Astell-Burt ThomasORCID

Abstract

Background Chronic disease represents a large and growing burden to the health care system worldwide. One method of managing this burden is the use of app-based interventions; however attrition, defined as lack of patient use of the intervention, is an issue for these interventions. While many apps have been developed, there is some evidence that they have significant issues with sustained use, with up to 98% of people only using the app for a short time before dropping out and/or dropping use down to the point where the app is no longer effective at helping to manage disease. Objective Our objectives are to systematically appraise and perform a meta-analysis on dropout rates in apps for chronic disease and to qualitatively synthesize possible reasons for these dropout rates that could be addressed in future interventions. Methods MEDLINE (Medical Literature Analysis and Retrieval System Online), PubMed, Cochrane CENTRAL (Central Register of Controlled Trials), and Embase were searched from 2003 to the present to look at mobile health (mHealth) and attrition or dropout. Studies, either randomized controlled trials (RCTs) or observational trials, looking at chronic disease with measures of dropout were included. Meta-analysis of attrition rates was conducted in Stata, version 15.1 (StataCorp LLC). Included studies were also qualitatively synthesized to examine reasons for dropout and avenues for future research. Results Of 833 studies identified in the literature search, 17 were included in the review and meta-analysis. Out of 17 studies, 9 (53%) were RCTs and 8 (47%) were observational trials, with both types covering a range of chronic diseases. The pooled dropout rate was 43% (95% CI 29-57), with observational studies having a higher dropout rate (49%, 95% CI 27-70) than RCTs in more controlled scenarios, which only had a 40% dropout rate (95% CI 16-63). The studies were extremely varied, which is represented statistically in the high degree of heterogeneity (I2>99%). Qualitative synthesis revealed a range of reasons relating to attrition from app-based interventions, including social, demographic, and behavioral factors that could be addressed. Conclusions Dropout rates in mHealth interventions are high, but possible areas to minimize attrition exist. Reducing dropout rates will make these apps more effective for disease management in the long term. Trial Registration International Prospective Register of Systematic Reviews (PROSPERO) CRD42019128737; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019128737

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference32 articles.

1. Global Report on Diabetes20162020-09-22Geneva, SwitzerlandWorld Health Organizationhttps://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=A20B0AE31F0C6512AE42FBDC695F695F?sequence=1

2. Detecting the hidden burden of pre-diabetes and diabetes in Western Sydney

3. Diabetes: The Silent Pandemic and its Impact on Australia20152020-05-01Canberra, AustraliaDiabetes Australiahttps://static.diabetesaustralia.com.au/s/fileassets/diabetes-australia/e7282521-472b-4313-b18e-be84c3d5d907.pdf

4. Physical Activity in Culturally and Linguistically Diverse Migrant Groups to Western Society

5. Optimal management of type 2 diabetes: the evidence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3