Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study

Author:

Haines-Delmont AlinaORCID,Chahal GurditORCID,Bruen Ashley JaneORCID,Wall AbbieORCID,Khan Christina TaraORCID,Sadashiv RameshORCID,Fearnley DavidORCID

Abstract

Background Digital phenotyping and machine learning are currently being used to augment or even replace traditional analytic procedures in many domains, including health care. Given the heavy reliance on smartphones and mobile devices around the world, this readily available source of data is an important and highly underutilized source that has the potential to improve mental health risk prediction and prevention and advance mental health globally. Objective This study aimed to apply machine learning in an acute mental health setting for suicide risk prediction. This study uses a nascent approach, adding to existing knowledge by using data collected through a smartphone in place of clinical data, which have typically been collected from health care records. Methods We created a smartphone app called Strength Within Me, which was linked to Fitbit, Apple Health kit, and Facebook, to collect salient clinical information such as sleep behavior and mood, step frequency and count, and engagement patterns with the phone from a cohort of inpatients with acute mental health (n=66). In addition, clinical research interviews were used to assess mood, sleep, and suicide risk. Multiple machine learning algorithms were tested to determine the best fit. Results K-nearest neighbors (KNN; k=2) with uniform weighting and the Euclidean distance metric emerged as the most promising algorithm, with 68% mean accuracy (averaged over 10,000 simulations of splitting the training and testing data via 10-fold cross-validation) and an average area under the curve of 0.65. We applied a combined 5×2 F test to test the model performance of KNN against the baseline classifier that guesses training majority, random forest, support vector machine and logistic regression, and achieved F statistics of 10.7 (P=.009) and 17.6 (P=.003) for training majority and random forest, respectively, rejecting the null of performance being the same. Therefore, we have taken the first steps in prototyping a system that could continuously and accurately assess the risk of suicide via mobile devices. Conclusions Predicting for suicidality is an underaddressed area of research to which this paper makes a useful contribution. This is part of the first generation of studies to suggest that it is feasible to utilize smartphone-generated user input and passive sensor data to generate a risk algorithm among inpatients at suicide risk. The model reveals fair concordance between phone-derived and research-generated clinical data, and with iterative development, it has the potential for accurate discriminant risk prediction. However, although full automation and independence of clinical judgment or input would be a worthy development for those individuals who are less likely to access specialist mental health services, and for providing a timely response in a crisis situation, the ethical and legal implications of such advances in the field of psychiatry need to be acknowledged.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3