Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation

Author:

Rongali SubendhuORCID,Rose Adam JORCID,McManus David DORCID,Bajracharya Adarsha SORCID,Kapoor AlokORCID,Granillo EdgardORCID,Yu HongORCID

Abstract

Background Scalable and accurate health outcome prediction using electronic health record (EHR) data has gained much attention in research recently. Previous machine learning models mostly ignore relations between different types of clinical data (ie, laboratory components, International Classification of Diseases codes, and medications). Objective This study aimed to model such relations and build predictive models using the EHR data from intensive care units. We developed innovative neural network models and compared them with the widely used logistic regression model and other state-of-the-art neural network models to predict the patient’s mortality using their longitudinal EHR data. Methods We built a set of neural network models that we collectively called as long short-term memory (LSTM) outcome prediction using comprehensive feature relations or in short, CLOUT. Our CLOUT models use a correlational neural network model to identify a latent space representation between different types of discrete clinical features during a patient’s encounter and integrate the latent representation into an LSTM-based predictive model framework. In addition, we designed an ablation experiment to identify risk factors from our CLOUT models. Using physicians’ input as the gold standard, we compared the risk factors identified by both CLOUT and logistic regression models. Results Experiments on the Medical Information Mart for Intensive Care-III dataset (selected patient population: 7537) show that CLOUT (area under the receiver operating characteristic curve=0.89) has surpassed logistic regression (0.82) and other baseline NN models (<0.86). In addition, physicians’ agreement with the CLOUT-derived risk factor rankings was statistically significantly higher than the agreement with the logistic regression model. Conclusions Our results support the applicability of CLOUT for real-world clinical use in identifying patients at high risk of mortality.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3