A Blockchain-Based Dynamic Consent Architecture to Support Clinical Genomic Data Sharing (ConsentChain): Proof-of-Concept Study

Author:

Albalwy FaisalORCID,Brass AndrewORCID,Davies AngelaORCID

Abstract

Background In clinical genomics, sharing of rare genetic disease information between genetic databases and laboratories is essential to determine the pathogenic significance of variants to enable the diagnosis of rare genetic diseases. Significant concerns regarding data governance and security have reduced this sharing in practice. Blockchain could provide a secure method for sharing genomic data between involved parties and thus help overcome some of these issues. Objective This study aims to contribute to the growing knowledge of the potential role of blockchain technology in supporting the sharing of clinical genomic data by describing blockchain-based dynamic consent architecture to support clinical genomic data sharing and provide a proof-of-concept implementation, called ConsentChain, for the architecture to explore its performance. Methods The ConsentChain requirements were captured from a patient forum to identify security and consent concerns. The ConsentChain was developed on the Ethereum platform, in which smart contracts were used to model the actions of patients, who may provide or withdraw consent to share their data; the data creator, who collects and stores patient data; and the data requester, who needs to query and access the patient data. A detailed analysis was undertaken of the ConsentChain performance as a function of the number of transactions processed by the system. Results We describe ConsentChain, a blockchain-based system that provides a web portal interface to support clinical genomic sharing. ConsentChain allows patients to grant or withdraw data requester access and allows data requesters to query and submit access to data stored in a secure off-chain database. We also developed an ontology model to represent patient consent elements into machine-readable codes to automate the consent and data access processes. Conclusions Blockchains and smart contracts can provide an efficient and scalable mechanism to support dynamic consent functionality and address some of the barriers that inhibit genomic data sharing. However, they are not a complete answer, and a number of issues still need to be addressed before such systems can be deployed in practice, particularly in relation to verifying user credentials.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3