Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach

Author:

Gopukumar DeepikaORCID,Ghoshal AbhijeetORCID,Zhao HuiminORCID

Abstract

Background The Centers for Medicare and Medicaid Services projects that health care costs will continue to grow over the next few years. Rising readmission costs contribute significantly to increasing health care costs. Multiple areas of health care, including readmissions, have benefited from the application of various machine learning algorithms in several ways. Objective We aimed to identify suitable models for predicting readmission charges billed by hospitals. Our literature review revealed that this application of machine learning is underexplored. We used various predictive methods, ranging from glass-box models (such as regularization techniques) to black-box models (such as deep learning–based models). Methods We defined readmissions as readmission with the same major diagnostic category (RSDC) and all-cause readmission category (RADC). For these readmission categories, 576,701 and 1,091,580 individuals, respectively, were identified from the Nationwide Readmission Database of the Healthcare Cost and Utilization Project by the Agency for Healthcare Research and Quality for 2013. Linear regression, lasso regression, elastic net, ridge regression, eXtreme gradient boosting (XGBoost), and a deep learning model based on multilayer perceptron (MLP) were the 6 machine learning algorithms we tested for RSDC and RADC through 10-fold cross-validation. Results Our preliminary analysis using a data-driven approach revealed that within RADC, the subsequent readmission charge billed per patient was higher than the previous charge for 541,090 individuals, and this number was 319,233 for RSDC. The top 3 major diagnostic categories (MDCs) for such instances were the same for RADC and RSDC. The average readmission charge billed was higher than the previous charge for 21 of the MDCs in the case of RSDC, whereas it was only for 13 of the MDCs in RADC. We recommend XGBoost and the deep learning model based on MLP for predicting readmission charges. The following performance metrics were obtained for XGBoost: (1) RADC (mean absolute percentage error [MAPE]=3.121%; root mean squared error [RMSE]=0.414; mean absolute error [MAE]=0.317; root relative squared error [RRSE]=0.410; relative absolute error [RAE]=0.399; normalized RMSE [NRMSE]=0.040; mean absolute deviation [MAD]=0.031) and (2) RSDC (MAPE=3.171%; RMSE=0.421; MAE=0.321; RRSE=0.407; RAE=0.393; NRMSE=0.041; MAD=0.031). The performance obtained for MLP-based deep neural networks are as follows: (1) RADC (MAPE=3.103%; RMSE=0.413; MAE=0.316; RRSE=0.410; RAE=0.397; NRMSE=0.040; MAD=0.031) and (2) RSDC (MAPE=3.202%; RMSE=0.427; MAE=0.326; RRSE=0.413; RAE=0.399; NRMSE=0.041; MAD=0.032). Repeated measures ANOVA revealed that the mean RMSE differed significantly across models with P<.001. Post hoc tests using the Bonferroni correction method indicated that the mean RMSE of the deep learning/XGBoost models was statistically significantly (P<.001) lower than that of all other models, namely linear regression/elastic net/lasso/ridge regression. Conclusions Models built using XGBoost and MLP are suitable for predicting readmission charges billed by hospitals. The MDCs allow models to accurately predict hospital readmission charges.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference64 articles.

1. JamoomEYangNTable of electronic health record adoption use among office-based physicians in the US by state: 2015 National Electronic Health Records SurveyNational Electronic Health Records Survey: 2015 State and National Electronic Health Record Adoption Summary Tables20162021-12-29Hyattsville, MD, United StatesNational Center for Health Statisticshttps://www.cdc.gov/nchs/data/ahcd/nehrs/2015_nehrs_web_table.pdf

2. Development of the Electronic Health Record

3. WilsonLMA patients' readmission rates higher than traditional Medicare, study finds; 2019HEALTHCAREDIVE2019062021-01-11https://www.healthcaredive.com/news/ma-patients-readmission-rates-higher-than-traditional-medicare-study-find/557694/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3