Abstract
Background
Three-dimensional scans are increasingly used to quantify biological topographical changes and clinical health outcomes. Traditionally, the use of 3D scans has been limited to specialized centers owing to the high cost of the scanning equipment and the necessity for complex analysis software. Technological advances have made cheaper, more accessible methods of data capture and analysis available in the field of dentistry, potentially facilitating a primary care system to quantify disease progression. However, this system has yet to be compared with previous high-precision methods in university hospital settings.
Objective
The aim of this study was to compare a dental primary care method of data capture (intraoral scanner) with a precision hospital-based method (laser profilometer) in addition to comparing open source and commercial software available for data analysis.
Methods
Longitudinal dental wear data from 30 patients were analyzed using a two-factor factorial experimental design. Bimaxillary intraoral digital scans (TrueDefinition, 3M, UK) and conventional silicone impressions, poured in type-4 dental stone, were made at both baseline and follow-up appointments (mean 36 months, SD 10.9). Stone models were scanned using precision laser profilometry (Taicaan, Southampton, UK). Three-dimensional changes in both forms of digital scans of the first molars (n=76) were quantitatively analyzed using the engineering software Geomagic Control (3D Systems, Germany) and freeware WearCompare (Leeds Digital Dentistry, UK). Volume change (mm3) was the primary measurement outcome. The maximum point loss (μm) and the average profile loss (μm) were also recorded. Data were paired and skewed, and were therefore compared using Wilcoxon signed-rank tests with Bonferroni correction.
Results
The median (IQR) volume change for Geomagic using profilometry and using the intraoral scan was –0.37 mm3 (–3.75-2.30) and +0.51 mm3 (–2.17-4.26), respectively (P<.001). Using WearCompare, the median (IQR) volume change for profilometry and intraoral scanning was –1.21 mm3 (–3.48-0.56) and –0.39 mm3 (–3.96-2.76), respectively (P=.04). WearCompare detected significantly greater volume loss than Geomagic regardless of scanner type. No differences were observed between groups with respect to the maximum point loss or average profile loss.
Conclusions
As expected, the method of data capture, software used, and measurement metric all significantly influenced the measurement outcome. However, when appropriate analysis was used, the primary care system was able to quantify the degree of change and can be recommended depending on the accuracy needed to diagnose a condition. Lower-resolution scanners may underestimate complex changes when measuring at the micron level.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献