Topic and Trend Analysis of Weibo Discussions About COVID-19 Medications Before and After China’s Exit from the Zero-COVID Policy: Retrospective Infoveillance Study

Author:

Lan DuoORCID,Ren WujiongORCID,Ni KeORCID,Zhu YichengORCID

Abstract

Background After 3 years of its zero-COVID policy, China lifted its stringent pandemic control measures with the announcement of the 10 new measures on December 7, 2022. Existing estimates suggest 90%-97% of the total population was infected during December. This change created a massive demand for COVID-19 medications and treatments, either modern medicines or traditional Chinese medicine (TCM). Objective This study aimed to explore (1) how China’s exit from the zero-COVID policy impacted media and the public’s attention to COVID-19 medications; (2) how social COVID-19 medication discussions were related to existing model estimates of daily cases during that period; (3) what the diversified themes and topics were and how they changed and developed from November 1 to December 31, 2022; and (4) which topics about COVID-19 medications were focused on by mainstream and self-media accounts during the exit. The answers to these questions could help us better understand the consequences of exit strategies and explore the utilities of Sina Weibo data for future infoveillance studies. Methods Using a scrapper for data retrieval and the structural topic modeling (STM) algorithm for analysis, this study built 3 topic models (all data, before a policy change, and after a policy change) of relevant discussions on the Chinese social media platform Weibo. We compared topic distributions against existing estimates of daily cases and between models before and after the change. We also compared proportions of weibos published by mainstream versus self-media accounts over time on different topics. Results We found that Weibo discussions shifted sharply from concerns of social risks (case tracking, governmental regulations, etc) to those of personal risks (symptoms, purchases, etc) surrounding COVID-19 infection after the exit from the zero-COVID policy. Weibo topics of “symptom sharing” and “purchase and shortage” of modern medicines correlated more strongly with existing susceptible-exposed-infected-recovered (SEIR) model estimates compared to “TCM formulae” and other topics. During the exit, mainstream accounts showed efforts to specifically engage in topics related to worldwide pandemic control policy comparison and regulations about import and reimbursement of medications. Conclusions The exit from the zero-COVID policy in China was accompanied by a sudden increase in social media discussions about COVID-19 medications, the demand for which substantially increased after the exit. A large proportion of Weibo discussions were emotional and expressed increased risk concerns over medication shortage, unavailability, and delay in delivery. Topic keywords showed that self-medication was sometimes practiced alone or with unprofessional help from others, while mainstream accounts also tried to provide certain medication instructions. Of the 16 topics identified in all 3 STM models, only “symptom sharing” and “purchase and shortage” showed a considerable correlation with SEIR model estimates of daily cases. Future studies could consider topic exploration before conducting predictive infoveillance analysis, even with narrowly defined search criteria with Weibo data.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference77 articles.

1. Dynamic zero COVID policy in the fight against COVID

2. Optimizing the dynamic zero-COVID policy in China

3. YeungJChina scraps some of its most controversial Covid rules, in significant step toward reopeningCNN20222023-01-31https://www.cnn.com/2022/12/07/china/china-covid-restrictions-explainer-intl-hnk/index.html

4. China can prepare to end its zero-COVID policy

5. China quietly plans a pivot from ‘zero COVID’

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3