Abstract
Background
The radial artery pulse wave is a widely used physiological signal for disease diagnosis and personal health monitoring because it provides insight into the overall health of the heart and blood vessels. Periodic radial artery pulse signals are subsequently decomposed into single pulse wave periods (segments) for physiological parameter evaluations. However, abnormal periods frequently arise due to external interference, the inherent imperfections of current segmentation methods, and the quality of the pulse wave signals.
Objective
The objective of this paper was to develop a machine learning model to detect abnormal pulse periods in real clinical data.
Methods
Various machine learning models, such as k-nearest neighbor, logistic regression, and support vector machines, were applied to classify the normal and abnormal periods in 8561 segments extracted from the radial pulse waves of 390 outpatients. The recursive feature elimination method was used to simplify the classifier.
Results
It was found that a logistic regression model with only four input features can achieve a satisfactory result. The area under the receiver operating characteristic curve from the test set was 0.9920. In addition, these classifiers can be easily interpreted.
Conclusions
We expect that this model can be applied in smart sport watches and watchbands to accurately evaluate human health status.
Subject
Health Information Management,Health Informatics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献