Potential Early Identification of a Large Campylobacter Outbreak Using Alternative Surveillance Data Sources: Autoregressive Modelling and Spatiotemporal Clustering

Author:

Adnan MehnazORCID,Gao XiaoyingORCID,Bai XiaohanORCID,Newbern ElizabethORCID,Sherwood JillORCID,Jones NicholasORCID,Baker MichaelORCID,Wood TimORCID,Gao WeiORCID

Abstract

Background Over one-third of the population of Havelock North, New Zealand, approximately 5500 people, were estimated to have been affected by campylobacteriosis in a large waterborne outbreak. Cases reported through the notifiable disease surveillance system (notified case reports) are inevitably delayed by several days, resulting in slowed outbreak recognition and delayed control measures. Early outbreak detection and magnitude prediction are critical to outbreak control. It is therefore important to consider alternative surveillance data sources and evaluate their potential for recognizing outbreaks at the earliest possible time. Objective The first objective of this study is to compare and validate the selection of alternative data sources (general practice consultations, consumer helpline, Google Trends, Twitter microblogs, and school absenteeism) for their temporal predictive strength for Campylobacter cases during the Havelock North outbreak. The second objective is to examine spatiotemporal clustering of data from alternative sources to assess the size and geographic extent of the outbreak and to support efforts to attribute its source. Methods We combined measures derived from alternative data sources during the 2016 Havelock North campylobacteriosis outbreak with notified case report counts to predict suspected daily Campylobacter case counts up to 5 days before cases reported in the disease surveillance system. Spatiotemporal clustering of the data was analyzed using Local Moran’s I statistics to investigate the extent of the outbreak in both space and time within the affected area. Results Models that combined consumer helpline data with autoregressive notified case counts had the best out-of-sample predictive accuracy for 1 and 2 days ahead of notified case reports. Models using Google Trends and Twitter typically performed the best 3 and 4 days before case notifications. Spatiotemporal clusters showed spikes in school absenteeism and consumer helpline inquiries that preceded the notified cases in the city primarily affected by the outbreak. Conclusions Alternative data sources can provide earlier indications of a large gastroenteritis outbreak compared with conventional case notifications. Spatiotemporal analysis can assist in refining the geographical focus of an outbreak and can potentially support public health source attribution efforts. Further work is required to assess the location of such surveillance data sources and methods in routine public health practice.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference47 articles.

1. MooreDDrewRDaviesPRipponRThe Economic Costs of the Havelock North August 2016 Waterborne Disease OutbreakSapere Research Group Limited20172020-08-27https://www.health.govt.nz/system/files/documents/publications/havelock_north_outbreak_costing_final_report_-_august_2017.pdf

2. Report of the Havelock North Drinking Water Inquiry: Stage 1Internal Affairs2020-08-27https://www.dia.govt.nz/vwluResources/Report-Havelock-North-Water-Inquiry-Stage-1/$file/Report-Havelock-North-Water-Inquiry-Stage-1.pdf

3. Ministry of Health New ZealandA Secure Web-based Application Based on the Surveillance Information New Zealand (Survinz) ArchitecturePublic Health Surveillance2020-08-27https://surv.esr.cri.nz/episurv/index.php

4. Using Baidu Search Index to Predict Dengue Outbreak in China

5. A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3