Improving an Electronic Health Record–Based Clinical Prediction Model Under Label Deficiency: Network-Based Generative Adversarial Semisupervised Approach

Author:

Li RunzeORCID,Tian YuORCID,Shen ZhuyiORCID,Li JinORCID,Li JunORCID,Ding KefengORCID,Li JingsongORCID

Abstract

Background Observational biomedical studies facilitate a new strategy for large-scale electronic health record (EHR) utilization to support precision medicine. However, data label inaccessibility is an increasingly important issue in clinical prediction, despite the use of synthetic and semisupervised learning from data. Little research has aimed to uncover the underlying graphical structure of EHRs. Objective A network-based generative adversarial semisupervised method is proposed. The objective is to train clinical prediction models on label-deficient EHRs to achieve comparable learning performance to supervised methods. Methods Three public data sets and one colorectal cancer data set gathered from the Second Affiliated Hospital of Zhejiang University were selected as benchmarks. The proposed models were trained on 5% to 25% labeled data and evaluated on classification metrics against conventional semisupervised and supervised methods. The data quality, model security, and memory scalability were also evaluated. Results The proposed method for semisupervised classification outperforms related semisupervised methods under the same setup, with the average area under the receiver operating characteristics curve (AUC) reaching 0.945, 0.673, 0.611, and 0.588 for the four data sets, respectively, followed by graph-based semisupervised learning (0.450, 0.454, 0.425, and 0.5676, respectively) and label propagation (0.475,0.344, 0.440, and 0.477, respectively). The average classification AUCs with 10% labeled data were 0.929, 0.719, 0.652, and 0.650, respectively, comparable to that of the supervised learning methods logistic regression (0.601, 0.670, 0.731, and 0.710, respectively), support vector machines (0.733, 0.720, 0.720, and 0.721, respectively), and random forests (0.982, 0.750, 0.758, and 0.740, respectively). The concerns regarding the secondary use of data and data security are alleviated by realistic data synthesis and robust privacy preservation. Conclusions Training clinical prediction models on label-deficient EHRs is indispensable in data-driven research. The proposed method has great potential to exploit the intrinsic structure of EHRs and achieve comparable learning performance to supervised methods.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing personalized medicine with generative AI: a systematic review;Artificial Intelligence Review;2024-04-25

2. Revolutionizing Personalized Medicine with Generative AI: A Systematic Review;2024-01-24

3. Deep learning-based particle gradation detection of fillers;2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML);2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3