Machine Learning–Based Text Analysis to Predict Severely Injured Patients in Emergency Medical Dispatch: Model Development and Validation

Author:

Chin Kuan-ChenORCID,Cheng Yu-ChiaORCID,Sun Jen-TangORCID,Ou Chih-YenORCID,Hu Chun-HuaORCID,Tsai Ming-ChiORCID,Ma Matthew Huei-MingORCID,Chiang Wen-ChuORCID,Chen Albert YORCID

Abstract

Background Early recognition of severely injured patients in prehospital settings is of paramount importance for timely treatment and transportation of patients to further treatment facilities. The dispatching accuracy has seldom been addressed in previous studies. Objective In this study, we aimed to build a machine learning–based model through text mining of emergency calls for the automated identification of severely injured patients after a road accident. Methods Audio recordings of road accidents in Taipei City, Taiwan, in 2018 were obtained and randomly sampled. Data on call transfers or non-Mandarin speeches were excluded. To predict cases of severe trauma identified on-site by emergency medical technicians, all included cases were evaluated by both humans (6 dispatchers) and a machine learning model, that is, a prehospital-activated major trauma (PAMT) model. The PAMT model was developed using term frequency–inverse document frequency, rule-based classification, and a Bernoulli naïve Bayes classifier. Repeated random subsampling cross-validation was applied to evaluate the robustness of the model. The prediction performance of dispatchers and the PAMT model, in severe cases, was compared. Performance was indicated by sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. Results Although the mean sensitivity and negative predictive value obtained by the PAMT model were higher than those of dispatchers, they obtained higher mean specificity, positive predictive value, and accuracy. The mean accuracy of the PAMT model, from certainty level 0 (lowest certainty) to level 6 (highest certainty), was higher except for levels 5 and 6. The overall performances of the dispatchers and the PAMT model were similar; however, the PAMT model had higher accuracy in cases where the dispatchers were less certain of their judgments. Conclusions A machine learning–based model, called the PAMT model, was developed to predict severe road accident trauma. The results of our study suggest that the accuracy of the PAMT model is not superior to that of the participating dispatchers; however, it may assist dispatchers when they lack confidence while making a judgment.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3