Machine Learning–Based Prediction Models for Different Clinical Risks in Different Hospitals: Evaluation of Live Performance

Author:

Sun HongORCID,Depraetere KristofORCID,Meesseman LaurentORCID,Cabanillas Silva PatriciaORCID,Szymanowsky RalphORCID,Fliegenschmidt JanisORCID,Hulde NikolaiORCID,von Dossow VeraORCID,Vanbiervliet MartijnORCID,De Baerdemaeker JosORCID,Roccaro-Waldmeyer Diana MORCID,Stieg JörgORCID,Domínguez Hidalgo ManuelORCID,Dahlweid Fried-MichaelORCID

Abstract

Background Machine learning algorithms are currently used in a wide array of clinical domains to produce models that can predict clinical risk events. Most models are developed and evaluated with retrospective data, very few are evaluated in a clinical workflow, and even fewer report performances in different hospitals. In this study, we provide detailed evaluations of clinical risk prediction models in live clinical workflows for three different use cases in three different hospitals. Objective The main objective of this study was to evaluate clinical risk prediction models in live clinical workflows and compare their performance in these setting with their performance when using retrospective data. We also aimed at generalizing the results by applying our investigation to three different use cases in three different hospitals. Methods We trained clinical risk prediction models for three use cases (ie, delirium, sepsis, and acute kidney injury) in three different hospitals with retrospective data. We used machine learning and, specifically, deep learning to train models that were based on the Transformer model. The models were trained using a calibration tool that is common for all hospitals and use cases. The models had a common design but were calibrated using each hospital’s specific data. The models were deployed in these three hospitals and used in daily clinical practice. The predictions made by these models were logged and correlated with the diagnosis at discharge. We compared their performance with evaluations on retrospective data and conducted cross-hospital evaluations. Results The performance of the prediction models with data from live clinical workflows was similar to the performance with retrospective data. The average value of the area under the receiver operating characteristic curve (AUROC) decreased slightly by 0.6 percentage points (from 94.8% to 94.2% at discharge). The cross-hospital evaluations exhibited severely reduced performance: the average AUROC decreased by 8 percentage points (from 94.2% to 86.3% at discharge), which indicates the importance of model calibration with data from the deployment hospital. Conclusions Calibrating the prediction model with data from different deployment hospitals led to good performance in live settings. The performance degradation in the cross-hospital evaluation identified limitations in developing a generic model for different hospitals. Designing a generic process for model development to generate specialized prediction models for each hospital guarantees model performance in different hospitals.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3