Development of Phenotyping Algorithms for the Identification of Organ Transplant Recipients: Cohort Study

Author:

Wheless LeeORCID,Baker LauraORCID,Edwards LaVarORCID,Anand NimayORCID,Birdwell KellyORCID,Hanlon AllisonORCID,Chren Mary-MargaretORCID

Abstract

Background Studies involving organ transplant recipients (OTRs) are often limited to the variables collected in the national Scientific Registry of Transplant Recipients database. Electronic health records contain additional variables that can augment this data source if OTRs can be identified accurately. Objective The aim of this study was to develop phenotyping algorithms to identify OTRs from electronic health records. Methods We used Vanderbilt’s deidentified version of its electronic health record database, which contains nearly 3 million subjects, to develop algorithms to identify OTRs. We identified all 19,817 individuals with at least one International Classification of Diseases (ICD) or Current Procedural Terminology (CPT) code for organ transplantation. We performed a chart review on 1350 randomly selected individuals to determine the transplant status. We constructed machine learning models to calculate positive predictive values and sensitivity for combinations of codes by using classification and regression trees, random forest, and extreme gradient boosting algorithms. Results Of the 1350 reviewed patient charts, 827 were organ transplant recipients while 511 had no record of a transplant, and 12 were equivocal. Most patients with only 1 or 2 transplant codes did not have a transplant. The most common reasons for being labeled a nontransplant patient were the lack of data (229/511, 44.8%) or the patient being evaluated for an organ transplant (174/511, 34.1%). All 3 machine learning algorithms identified OTRs with overall >90% positive predictive value and >88% sensitivity. Conclusions Electronic health records linked to biobanks are increasingly used to conduct large-scale studies but have not been well-utilized in organ transplantation research. We present rigorously evaluated methods for phenotyping OTRs from electronic health records that will enable the use of the full spectrum of clinical data in transplant research. Using several different machine learning algorithms, we were able to identify transplant cases with high accuracy by using only ICD and CPT codes.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3