Adherence to Blended or Face-to-Face Smoking Cessation Treatment and Predictors of Adherence: Randomized Controlled Trial

Author:

Siemer LutzORCID,Brusse-Keizer Marjolein G JORCID,Postel Marloes GORCID,Ben Allouch SomayaORCID,Sanderman RobbertORCID,Pieterse Marcel EORCID

Abstract

Background Blended face-to-face and web-based treatment is a promising way to deliver smoking cessation treatment. Since adherence has been shown to be an indicator of treatment acceptability and a determinant for effectiveness, we explored and compared adherence and predictors of adherence to blended and face-to-face alone smoking cessation treatments with similar content and intensity. Objective The objectives of this study were (1) to compare adherence to a blended smoking cessation treatment with adherence to a face-to-face treatment; (2) to compare adherence within the blended treatment to its face-to-face mode and web mode; and (3) to determine baseline predictors of adherence to both treatments as well as (4) the predictors to both modes of the blended treatment. Methods We calculated the total duration of treatment exposure for patients (N=292) of a Dutch outpatient smoking cessation clinic who were randomly assigned either to the blended smoking cessation treatment (n=130) or to a face-to-face treatment with identical components (n=162). For both treatments (blended and face-to-face) and for the two modes of delivery within the blended treatment (face-to-face vs web mode), adherence levels (ie, treatment time) were compared and the predictors of adherence were identified within 33 demographic, smoking-related, and health-related patient characteristics. Results We found no significant difference in adherence between the blended and the face-to-face treatments. Participants in the blended treatment group spent an average of 246 minutes in treatment (median 106.7% of intended treatment time, IQR 150%-355%) and participants in the face-to-face group spent 238 minutes (median 103.3% of intended treatment time, IQR 150%-330%). Within the blended group, adherence to the face-to-face mode was twice as high as that to the web mode. Participants in the blended group spent an average of 198 minutes (SD 120) in face-to-face mode (152% of the intended treatment time) and 75 minutes (SD 53) in web mode (75% of the intended treatment time). Higher age was the only characteristic consistently found to uniquely predict higher adherence in both the blended and face-to-face groups. For the face-to-face group, more social support for smoking cessation was also predictive of higher adherence. The variability in adherence explained by these predictors was rather low (blended R2=0.049; face-to-face R2=0.076). Within the blended group, living without children predicted higher adherence to the face-to-face mode (R2=0.034), independent of age. Higher adherence to the web mode of the blended treatment was predicted by a combination of an extrinsic motivation to quit, a less negative attitude toward quitting, and less health complaints (R2=0.164). Conclusions This study represents one of the first attempts to thoroughly compare adherence and predictors of adherence of a blended smoking cessation treatment to an equivalent face-to-face treatment. Interestingly, although the overall adherence to both treatments appeared to be high, adherence within the blended treatment was much higher for the face-to-face mode than for the web mode. This supports the idea that in blended treatment, one mode of delivery can compensate for the weaknesses of the other. Higher age was found to be a common predictor of adherence to the treatments. The low variance in adherence predicted by the characteristics examined in this study suggests that other variables such as provider-related health system factors and time-varying patient characteristics should be explored in future research. Trial Registration Netherlands Trial Register NTR5113; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5113

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3