Abstract
Background
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with severe comorbidities. A multiomics approach can facilitate the identification of novel therapeutic targets and biomarkers with proper validation of potential microRNA (miRNA) interactions.
Objective
The aim of this study was to identify significant differentially expressed common target genes in various tissues and their regulating miRNAs from publicly available Gene Expression Omnibus (GEO) data sets of patients with T2DM using in silico analysis.
Methods
Using differentially expressed genes (DEGs) identified from 5 publicly available T2DM data sets, we performed functional enrichment, coexpression, and network analyses to identify pathways, protein-protein interactions, and miRNA-mRNA interactions involved in T2DM.
Results
We extracted 2852, 8631, 5501, 3662, and 3753 DEGs from the expression profiles of GEO data sets GSE38642, GSE25724, GSE20966, GSE26887, and GSE23343, respectively. DEG analysis showed that 16 common genes were enriched in insulin secretion, endocrine resistance, and other T2DM-related pathways. Four DEGs, MAML3, EEF1D, NRG1, and CDK5RAP2, were important in the cluster network regulated by commonly targeted miRNAs (hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-124-3p, hsa-mir-1-3p), which are involved in the advanced glycation end products (AGE)-receptor for advanced glycation end products (RAGE) signaling pathway, culminating in diabetic complications and endocrine resistance.
Conclusions
This study identified tissue-specific DEGs in T2DM, especially pertaining to the heart, liver, and pancreas. We identified a total of 16 common DEGs and the top four common targeting miRNAs (hsa-let-7b-5p, hsa-miR-124-3p, hsa-miR-1-3p, and has-miR-155-5p). The miRNAs identified are involved in regulating various pathways, including the phosphatidylinositol-3-kinase-protein kinase B, endocrine resistance, and AGE-RAGE signaling pathways.
Subject
General Earth and Planetary Sciences,General Environmental Science