Social Determinants of Digital Health Adoption: Pilot Cross-sectional Survey

Author:

Patel Sharvil PiyushORCID,Sun ElizabethORCID,Reinhardt AlecORCID,Geevarghese SanjalyORCID,He SimonORCID,Gazmararian Julie AORCID

Abstract

Background Interest in and funding for digital health interventions have rapidly grown in recent years. Despite the increasing familiarity with mobile health from regulatory bodies, providers, and patients, overarching research on digital health adoption has been primarily limited to morbidity-specific and non-US samples. Consequently, there is a limited understanding of what personal factors hold statistically significant relationships with digital health uptake. Moreover, this limits digital health communities’ knowledge of equity along digital health use patterns. Objective This study aims to identify the social determinants of digital health tool adoption in Georgia. Methods Web-based survey respondents in Georgia 18 years or older were recruited from mTurk to answer primarily closed-ended questions within the following domains: participant demographics and health consumption background, telehealth, digital health education, prescription management tools, digital mental health services, and doctor finder tools. Participants spent around 15 to 20 minutes on a survey to provide demographic and personal health care consumption data. This data was analyzed with multivariate linear and logistic regressions to identify which of these determinants, if any, held statistically significant relationships with the total number of digital health tool categories adopted and which of these determinants had absolute relationships with specific categories. Results A total of 362 respondents completed the survey. Private insurance, residence in an urban area, having a primary care provider, fewer urgent emergency room (ER) visits, more ER visits leading to inpatient stays, and chronic condition presence were significantly associated with the number of digital health tool categories adopted. The separate logistic regressions exhibited substantial variability, with 3.5 statistically significant predictors per model, on average. Age, federal poverty level, number of primary care provider visits in the past 12 months, number of nonurgent ER visits in the past 12 months, number of urgent ER visits in the past 12 months, number of ER visits leading to inpatient stays in the past 12 months, race, gender, ethnicity, insurance, education, residential area, access to the internet, difficulty accessing health care, usual source of care, status of primary care provider, and status of chronic condition all had at least one statistically significant relationship with the use of a specific digital health category. Conclusions The results demonstrate that persons who are socioeconomically disadvantaged may not adopt digital health tools at disproportionately higher rates. Instead, digital health tools may be adopted along social determinants of health, providing strong evidence for the digital health divide. The variability of digital health adoption necessitates investing in and building a common framework to increase mobile health access. With a common framework and a paradigm shift in the design, evaluation, and implementation strategies around digital health, disparities can be further mitigated and addressed. This likely will begin with a coordinated effort to determine barriers to adopting digital health solutions.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference28 articles.

1. Barriers and facilitators of the uptake of digital health technology in cardiovascular care: a systematic scoping review

2. AitkenMDigital health trends 2021: innovation, evidence, regulation, and adoptionIQVIA2021072022-11-23https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/digital-health-trends-2021/iqvia-institute-digital-health-trends-2021.pdf?_=1652132450364

3. Health App Use Among US Mobile Phone Owners: A National Survey

4. Back to the Future: Achieving Health Equity Through Health Informatics and Digital Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3