Neurorehabilitation Through Synergistic Man-Machine Interfaces Promoting Dormant Neuroplasticity in Spinal Cord Injury: Protocol for a Nonrandomized Controlled Trial

Author:

Athanasiou AlkinoosORCID,Mitsopoulos KonstantinosORCID,Praftsiotis ApostolosORCID,Astaras AlexanderORCID,Antoniou PanagiotisORCID,Pandria NikiORCID,Petronikolou VasileiaORCID,Kasimis KonstantinosORCID,Lyssas GeorgeORCID,Terzopoulos NikosORCID,Fiska VasilkiORCID,Kartsidis PanagiotisORCID,Savvidis TheodorosORCID,Arvanitidis AthanasiosORCID,Chasapis KonstantinosORCID,Moraitopoulos AlexandrosORCID,Nizamis KostasORCID,Kalfas AnestisORCID,Iakovidis ParisORCID,Apostolou ThomasORCID,Magras IoannisORCID,Bamidis PanagiotisORCID

Abstract

Background Spinal cord injury (SCI) constitutes a major sociomedical problem, impacting approximately 0.32-0.64 million people each year worldwide; particularly, it impacts young individuals, causing long-term, often irreversible disability. While effective rehabilitation of patients with SCI remains a significant challenge, novel neural engineering technologies have emerged to target and promote dormant neuroplasticity in the central nervous system. Objective This study aims to develop, pilot test, and optimize a platform based on multiple immersive man-machine interfaces offering rich feedback, including (1) visual motor imagery training under high-density electroencephalographic recording, (2) mountable robotic arms controlled with a wireless brain-computer interface (BCI), (3) a body-machine interface (BMI) consisting of wearable robotics jacket and gloves in combination with a serious game (SG) application, and (4) an augmented reality module. The platform will be used to validate a self-paced neurorehabilitation intervention and to study cortical activity in chronic complete and incomplete SCI at the cervical spine. Methods A 3-phase pilot study (clinical trial) was designed to evaluate the NeuroSuitUp platform, including patients with chronic cervical SCI with complete and incomplete injury aged over 14 years and age-/sex-matched healthy participants. Outcome measures include BCI control and performance in the BMI-SG module, as well as improvement of functional independence, while also monitoring neuropsychological parameters such as kinesthetic imagery, motivation, self-esteem, depression and anxiety, mental effort, discomfort, and perception of robotics. Participant enrollment into the main clinical trial is estimated to begin in January 2023 and end by December 2023. Results A preliminary analysis of collected data during pilot testing of BMI-SG by healthy participants showed that the platform was easy to use, caused no discomfort, and the robotics were perceived positively by the participants. Analysis of results from the main clinical trial will begin as recruitment progresses and findings from the complete analysis of results are expected in early 2024. Conclusions Chronic SCI is characterized by irreversible disability impacting functional independence. NeuroSuitUp could provide a valuable complementary platform for training in immersive rehabilitation methods to promote dormant neural plasticity. Trial Registration ClinicalTrials.gov NCT05465486; https://clinicaltrials.gov/ct2/show/NCT05465486 International Registered Report Identifier (IRRID) PRR1-10.2196/41152

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3