Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks

Author:

Adler Daniel AORCID,Ben-Zeev DrorORCID,Tseng Vincent W-SORCID,Kane John MORCID,Brian RachelORCID,Campbell Andrew TORCID,Hauser MartaORCID,Scherer Emily AORCID,Choudhury TanzeemORCID

Abstract

Background Schizophrenia spectrum disorders (SSDs) are chronic conditions, but the severity of symptomatic experiences and functional impairments vacillate over the course of illness. Developing unobtrusive remote monitoring systems to detect early warning signs of impending symptomatic relapses would allow clinicians to intervene before the patient’s condition worsens. Objective In this study, we aim to create the first models, exclusively using passive sensing data from a smartphone, to predict behavioral anomalies that could indicate early warning signs of a psychotic relapse. Methods Data used to train and test the models were collected during the CrossCheck study. Hourly features derived from smartphone passive sensing data were extracted from 60 patients with SSDs (42 nonrelapse and 18 relapse >1 time throughout the study) and used to train models and test performance. We trained 2 types of encoder-decoder neural network models and a clustering-based local outlier factor model to predict behavioral anomalies that occurred within the 30-day period before a participant's date of relapse (the near relapse period). Models were trained to recreate participant behavior on days of relative health (DRH, outside of the near relapse period), following which a threshold to the recreation error was applied to predict anomalies. The neural network model architecture and the percentage of relapse participant data used to train all models were varied. Results A total of 20,137 days of collected data were analyzed, with 726 days of data (0.037%) within any 30-day near relapse period. The best performing model used a fully connected neural network autoencoder architecture and achieved a median sensitivity of 0.25 (IQR 0.15-1.00) and specificity of 0.88 (IQR 0.14-0.96; a median 108% increase in behavioral anomalies near relapse). We conducted a post hoc analysis using the best performing model to identify behavioral features that had a medium-to-large effect (Cohen d>0.5) in distinguishing anomalies near relapse from DRH among 4 participants who relapsed multiple times throughout the study. Qualitative validation using clinical notes collected during the original CrossCheck study showed that the identified features from our analysis were presented to clinicians during relapse events. Conclusions Our proposed method predicted a higher rate of anomalies in patients with SSDs within the 30-day near relapse period and can be used to uncover individual-level behaviors that change before relapse. This approach will enable technologists and clinicians to build unobtrusive digital mental health tools that can predict incipient relapse in SSDs.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3