Digital Mental Health Challenges and the Horizon Ahead for Solutions

Author:

Balcombe LukeORCID,De Leo DiegoORCID

Abstract

The demand outstripping supply of mental health resources during the COVID-19 pandemic presents opportunities for digital technology tools to fill this new gap and, in the process, demonstrate capabilities to increase their effectiveness and efficiency. However, technology-enabled services have faced challenges in being sustainably implemented despite showing promising outcomes in efficacy trials since the early 2000s. The ongoing failure of these implementations has been addressed in reconceptualized models and frameworks, along with various efforts to branch out among disparate developers and clinical researchers to provide them with a key for furthering evaluative research. However, the limitations of traditional research methods in dealing with the complexities of mental health care warrant a diversified approach. The crux of the challenges of digital mental health implementation is the efficacy and evaluation of existing studies. Web-based interventions are increasingly used during the pandemic, allowing for affordable access to psychological therapies. However, a lagging infrastructure and skill base has limited the application of digital solutions in mental health care. Methodologies need to be converged owing to the rapid development of digital technologies that have outpaced the evaluation of rigorous digital mental health interventions and strategies to prevent mental illness. The functions and implications of human-computer interaction require a better understanding to overcome engagement barriers, especially with predictive technologies. Explainable artificial intelligence is being incorporated into digital mental health implementation to obtain positive and responsible outcomes. Investment in digital platforms and associated apps for real-time screening, tracking, and treatment offer the promise of cost-effectiveness in vulnerable populations. Although machine learning has been limited by study conduct and reporting methods, the increasing use of unstructured data has strengthened its potential. Early evidence suggests that the advantages outweigh the disadvantages of incrementing such technology. The limitations of an evidence-based approach require better integration of decision support tools to guide policymakers with digital mental health implementation. There is a complex range of issues with effectiveness, equity, access, and ethics (eg, privacy, confidentiality, fairness, transparency, reproducibility, and accountability), which warrant resolution. Evidence-informed policies, development of eminent digital products and services, and skills to use and maintain these solutions are required. Studies need to focus on developing digital platforms with explainable artificial intelligence–based apps to enhance resilience and guide the treatment decisions of mental health practitioners. Investments in digital mental health should ensure their safety and workability. End users should encourage the use of innovative methods to encourage developers to effectively evaluate their products and services and to render them a worthwhile investment. Technology-enabled services in a hybrid model of care are most likely to be effective (eg, specialists using these services among vulnerable, at-risk populations but not severe cases of mental ill health).

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3