Validity of Chatbot Use for Mental Health Assessment: Experimental Study

Author:

Schick AnitaORCID,Feine JasperORCID,Morana StefanORCID,Maedche AlexanderORCID,Reininghaus UlrichORCID

Abstract

Background Mental disorders in adolescence and young adulthood are major public health concerns. Digital tools such as text-based conversational agents (ie, chatbots) are a promising technology for facilitating mental health assessment. However, the human-like interaction style of chatbots may induce potential biases, such as socially desirable responding (SDR), and may require further effort to complete assessments. Objective This study aimed to investigate the convergent and discriminant validity of chatbots for mental health assessments, the effect of assessment mode on SDR, and the effort required by participants for assessments using chatbots compared with established modes. Methods In a counterbalanced within-subject design, we assessed 2 different constructs—psychological distress (Kessler Psychological Distress Scale and Brief Symptom Inventory-18) and problematic alcohol use (Alcohol Use Disorders Identification Test-3)—in 3 modes (chatbot, paper-and-pencil, and web-based), and examined convergent and discriminant validity. In addition, we investigated the effect of mode on SDR, controlling for perceived sensitivity of items and individuals’ tendency to respond in a socially desirable way, and we also assessed the perceived social presence of modes. Including a between-subject condition, we further investigated whether SDR is increased in chatbot assessments when applied in a self-report setting versus when human interaction may be expected. Finally, the effort (ie, complexity, difficulty, burden, and time) required to complete the assessments was investigated. Results A total of 146 young adults (mean age 24, SD 6.42 years; n=67, 45.9% female) were recruited from a research panel for laboratory experiments. The results revealed high positive correlations (all P<.001) of measures of the same construct across different modes, indicating the convergent validity of chatbot assessments. Furthermore, there were no correlations between the distinct constructs, indicating discriminant validity. Moreover, there were no differences in SDR between modes and whether human interaction was expected, although the perceived social presence of the chatbot mode was higher than that of the established modes (P<.001). Finally, greater effort (all P<.05) and more time were needed to complete chatbot assessments than for completing the established modes (P<.001). Conclusions Our findings suggest that chatbots may yield valid results. Furthermore, an understanding of chatbot design trade-offs in terms of potential strengths (ie, increased social presence) and limitations (ie, increased effort) when assessing mental health were established.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3